Daras, M. et al. Neurovascular problems of cocaine. Acta Neurol. Scand. 90(2), 124–129 (1994).
Du, C. et al. Cocaine-induced ischemia in prefrontal cortex is related to escalation of cocaine consumption in rodents. Mol. Psychiatry 25(8), 1759–1776 (2020).
Fujioka, M. et al. Hippocampal injury within the human mind after cardiac arrest. Cerebrovasc. Dis. 10(1), 2–7 (2000).
Connelly, Ok. L., Chen, X. & Kwan, P. F. Bilateral hippocampal stroke secondary to acute cocaine intoxication. Oxf. Med. Case Rep. 2015(3), 215–217 (2015).
Cervós-Navarro, J. & Diemer, N. H. Selective vulnerability in mind hypoxia. Crit. Rev. Neurobiol. 6(3), 149–182 (1991).
LaForge, Ok. S. et al. “Binge” cocaine differentially alters preproenkephalin mRNA ranges in guinea pig mind. Mind Res. Bull. 59(5), 353–357 (2003).
Cha, X.-Y. et al. NAC-1, a rat mind mRNA, is elevated within the nucleus accumbens three weeks after power cocaine self-administration. J. Neurosci. 17(18), 6864–6871 (1997).
Burtrum, D. & Silverstein, F. S. Hypoxic-ischemic mind damage stimulates glial fibrillary acidic protein mRNA and protein expression in neonatal rats. Exp. Neurol. 126(1), 112–118 (1994).
Hendricks-Munoz, Ok. D. et al. Cocaine stimulates endothelin-1 launch by means of the dopamine (D1) receptor and mitogenactivated kinase exercise (MAPK) in cultured human pulmonary artery endothelial cells. Pediatr. Res. 41(4), 21–21 (1997).
Wilbert-Lampen, U. et al. Cocaine will increase the endothelial launch of immunoreactive endothelin and its concentrations in human plasma and urine: Reversal by coincubation with sigma-receptor antagonists. Circulation 98(5), 385–390 (1998).
Pradhan, L. et al. Molecular evaluation of cocaine-induced endothelial dysfunction: function of endothelin-1 and nitric oxide. Cardiovasc. Toxicol. 8(4), 161–171 (2008).
Loor, G. & Schumacker, P. T. Function of hypoxia-inducible consider cell survival throughout myocardial ischemia–reperfusion. Cell Demise Differ. 15(4), 686–690 (2008).
Ramakrishnan, S., Anand, V. & Roy, S. Vascular endothelial progress issue signaling in hypoxia and irritation. J. Neuroimmune. Pharmacol 9(2), 142–160 (2014).
Yang, J. et al. Hypoxia-induced fibroblast progress issue 11 stimulates capillary-like endothelial tube formation. Oncol Rep 34(5), 2745–2751 (2015).
Shin, E. H. et al. Cocaine will increase endoplasmic reticulum stress protein expression in striatal neurons. Neuroscience 145(2), 621–630 (2007).
Hetz, C. The unfolded protein response: Controlling cell destiny selections below ER stress and past. Nat. Rev. Mol. Cell Biol. 13(2), 89–102 (2012).
Meusser, B. et al. ERAD: The lengthy street to destruction. Nat. Cell Biol. 7(8), 766–772 (2005).
Mellor, P. et al. CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis. Mol. Cell Biol. 33(24), 4985–4995 (2013).
Teske, B. F. et al. The eIF2 kinase PERK and the built-in stress response facilitate activation of ATF6 throughout endoplasmic reticulum stress. Mol. Biol. Cell 22(22), 4390–4405 (2011).
Oslowski, C. M. & Urano, F. Measuring ER stress and the unfolded protein response utilizing mammalian tissue tradition system. Strategies Enzymol 490, 71–92 (2011).
Kelz, M. B. et al. Expression of the transcription issue deltaFosB within the mind controls sensitivity to cocaine. Nature 401(6750), 272–276 (1999).
Savell, Ok. E. et al. A dopamine-induced gene expression signature regulates neuronal operate and cocaine response. Sci. Adv. 6(26), eaba4221 (2020).
Carlezon, W. A. et al. Regulation of cocaine reward by CREB. Science 282(5397), 2272–2275 (1998).
Lee, B. et al. The CREB/CRE transcriptional pathway: Safety in opposition to oxidative stress-mediated neuronal cell loss of life. J. Neurochem. 108(5), 1251–1265 (2009).
Beitner-Johnson, D. & Millhorn, D. E. Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism. J. Biol. Chem. 273(31), 19834–19839 (1998).
Pregi, N. et al. Oxidative stress-induced CREB upregulation promotes DNA injury restore previous to neuronal cell loss of life safety. Mol. Cell. Biochem. 425(1), 9–24 (2017).
Park, J. et al. A sensible software of generative adversarial networks for RNA-seq evaluation to foretell the molecular progress of Alzheimer’s illness. PLOS Computat. Biol. 16(7), e1008099 (2020).
Goodfellow, I. et al. Generative adversarial nets. Adv. Neural. Inf. Course of. Syst. 27, 2672–2680 (2014).
Cao, Y. J. et al. Latest advances of generative adversarial networks in laptop imaginative and prescient. IEEE Entry 7, 14985–15006 (2019).
Park, S.-W. et al. Evaluation on generative adversarial networks: specializing in laptop imaginative and prescient and its functions. Electronics 10(10), 1216 (2021).
Walker, D. M. et al. Cocaine self-administration alters transcriptome-wide responses within the mind’s reward circuitry. Biol. Psychiatry 84(12), 867–880 (2018).
Pitts, W. R. et al. Cocaine-induced myocardial ischemia and infarction: pathophysiology, recognition, and administration. Prog. Cardiovasc. Dis. 40(1), 65–76 (1997).
Minet, E. et al. HIF1A gene transcription depends on a core promoter sequence encompassing activating and inhibiting sequences situated upstream from the transcription initiation website and cis components situated inside the 5′UTR. Biochem. Biophys. Res. Commun. 261(2), 534–540 (1999).
Danon, A. & Assouline, G. Antiulcer exercise of hypertonic options within the rat: Attainable function of prostaglandins. Eur. J. Pharmacol. 58(4), 425–431 (1979).
Ladoux, A. & Frelin, C. Cardiac expressions of HIF-1 alpha and HLF/EPAS, two primary loop helix/PAS area transcription elements concerned in adaptative responses to hypoxic stresses. Biochem. Biophys. Res. Commun. 240(3), 552–556 (1997).
Patel, S. A. & Simon, M. C. Biology of hypoxia-inducible factor-2alpha in growth and illness. Cell Demise Differ. 15(4), 628–634 (2008).
Sozen, E., Karademir, B. & Ozer, N. Ok. Primary mechanisms in endoplasmic reticulum stress and relation to cardiovascular illnesses. Free Radic. Biol. Med. 78, 30–41 (2015).
Binet, F. & Sapieha, P. ER stress and angiogenesis. Cell Metab. 22(4), 560–575 (2015).
Du, C. et al. Cocaine will increase the intracellular calcium focus in mind independently of its cerebrovascular results. J. Neurosci. 26(45), 11522–11531 (2006).
Wanders, D. et al. Function of GCN2-Unbiased signaling by means of a noncanonical PERK/NRF2 pathway within the physiological responses to dietary methionine restriction. Diabetes 65(6), 1499–1510 (2016).
Zhang, P. et al. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol. Cell Biol. 22(19), 6681–6688 (2002).
Srivastava, S. P., Davies, M. V. & Kaufman, R. J. Calcium depletion from the endoplasmic reticulum prompts the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J. Biol. Chem. 270(28), 16619–16624 (1995).
Guix, F. X., Sartório, C. L. & Unwell-Raga, G. BACE1 translation: On the crossroads between Alzheimer’s illness neurodegeneration and reminiscence consolidation. J. Alzheimers Dis. Rep. 3(1), 113–148 (2019).
Tong, L., Heim, R. A. & Wu, S. Nitric oxide: A regulator of eukaryotic initiation issue 2 kinases. Free Radic. Biol. Med. 50(12), 1717–1725 (2011).
Kumar, R. et al. Dysfunction of the unfolded protein response throughout international mind ischemia and reperfusion. J. Cereb. Blood Circulation Metab. 23(4), 462–471 (2003).
Asada, R. et al. The signalling from endoplasmic reticulum-resident bZIP transcription elements concerned in numerous mobile physiology. J. Biochem. 149(5), 507–518 (2011).
Sampieri, L., Di Giusto, P. & Alvarez, C. creb3 transcription elements: ER-Golgi stress transducers as hubs for mobile homeostasis. Entrance. Cell Dev. Biol. 7, 123 (2019).
Kondo, S. et al. BBF2H7, a novel transmembrane bZIP transcription issue, is a brand new kind of endoplasmic reticulum stress transducer. Mol. Cell Biol. 27(5), 1716–1729 (2007).
Thiebaut, A. M. et al. Proteostasis throughout cerebral ischemia. Entrance. Neurosci. 13, 637 (2019).
Xie, J. et al. Protein kinase C iota protects neural cells in opposition to apoptosis induced by amyloid beta-peptide. Mind Res. Mol. Mind Res. 82(1–2), 107–113 (2000).
Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good and evil. Genes Most cancers 2(12), 1117–1133 (2011).
Dor, Y. & Keshet, E. Ischemia-driven angiogenesis. Traits Cardiovasc. Med. 7(8), 289–294 (1997).
Carmeliet, P. VEGF as a key mediator of angiogenesis in most cancers. Oncology 69(Suppl 3), 4–10 (2005).
Ferrari, G. et al. Reworking progress factor-beta 1 (TGF-beta1) induces angiogenesis by means of vascular endothelial progress issue (VEGF)-mediated apoptosis. J. Cell Physiol. 219(2), 449–458 (2009).
Jasielska, M. et al. Differential function of tumor necrosis issue (TNF)-alpha receptors within the growth of choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 51(8), 3874–3883 (2010).
Raica, M. & Cimpean, A. M. Platelet-derived progress issue (PDGF)/PDGF receptors (PDGFR) axis as goal for antitumor and antiangiogenic remedy. Prescribed drugs 3(3), 572–599 (2010).
Presta, M. et al. Fibroblast progress issue/fibroblast progress issue receptor system in angiogenesis. Cytokine Progress Issue Rev. 16(2), 159–178 (2005).
Cao, R. et al. Angiogenic synergism, vascular stability and enchancment of hind-limb ischemia by a mixture of PDGF-BB and FGF-2. Nat. Med. 9(5), 604–613 (2003).
Hashimoto, T. & Shibasaki, F. Hypoxia-inducible issue as an angiogenic grasp change. Entrance. Pediatr. https://doi.org/10.3389/fped.2015.00033 (2015).
Ramamoorthy, P., Xu, G. & Shi, H. Expression of hypoxia inducible issue 1alpha is protein kinase A-dependent in major cortical astrocytes uncovered to extreme hypoxia. Neurochem. Res. 44(1), 258–268 (2019).
Becerra-Calixto, A. & Cardona-Gómez, G. P. The function of astrocytes in neuroprotection after mind stroke: Potential in cell remedy. Entrance. Mol. Neurosci. https://doi.org/10.3389/fnmol.2017.00088 (2017).
Zhang, S. et al. GFAP expression in injured astrocytes in rats. Exp. Ther. Med. 14(3), 1905–1908 (2017).
Xu, W. et al. Protein kinase Ds promote tumor angiogenesis by means of mast cell recruitment and expression of angiogenic elements in prostate most cancers microenvironment. J. Exp. Clin. Most cancers Res. 38(1), 114 (2019).
Thauerer, B., Zur Nedden, S. & Baier-Bitterlich, G. Protein kinase C-related kinase (PKN/PRK): Potential key-role for PKN1 in safety of hypoxic neurons. Curr. Neuropharmacol. 12(3), 213–218 (2014).
Rozengurt, E. Protein kinase D signaling: A number of organic capabilities in well being and illness. Physiology 26(1), 23–33 (2011).
Nikonenko, A. G. et al. Structural options of ischemic injury within the hippocampus. Anat. Rec. 292(12), 1914–1921 (2009).
B’Chir, W. et al. The eIF2α/ATF4 pathway is crucial for stress-induced autophagy gene expression. Nucleic Acids Res. 41(16), 7683–7699 (2013).
Rozpedek, W. et al. The function of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor development throughout endoplasmic reticulum stress. Curr. Mol. Med. 16(6), 533–544 (2016).
Wortel, I. M. N. et al. Surviving stress: Modulation of ATF4-mediated stress responses in regular and malignant cells. Traits Endocrinol. Metab. 28(11), 794–806 (2017).
Sheng, Z. et al. A genome-wide RNA interference display screen reveals a vital CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications. Nat. Med. 16(6), 671–677 (2010).
Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future instructions. Nat. Neurosci. 24(3), 312–325 (2021).
Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in dependancy: Neuroimaging findings and scientific implications. Nat. Rev. Neurosci. 12(11), 652–669 (2011).
Wang, J. J. et al. Neurons in NAc core and BLA are activated throughout cocaine context-associated reward reminiscence retrieval in mice. Sheng Li Xue Bao 66(5), 545–558 (2014).
Meil, W. M. & See, R. E. Lesions of the basolateral amygdala abolish the flexibility of drug related cues to reinstate responding throughout withdrawal from self-administered cocaine. Behav. Mind Res. 87(2), 139–148 (1997).
See, R. E. Neural substrates of conditioned-cued relapse to drug-seeking habits. Pharmacol. Biochem. Behav. 71(3), 517–529 (2002).
Nakano, T. et al. A kinetic mannequin of dopamine and calcium-dependent striatal synaptic plasticity. PLoS Comput. Biol. 6(2), e1000670 (2010).
Zhang, Q. et al. Power cocaine disrupts neurovascular networks and cerebral operate: Optical imaging research in rodents. J. Biomed. Choose. 21(2), 26006 (2016).
Mikołajczyk, A. & M. Grochowski. Information augmentation for bettering deep studying in picture classification drawback. In 2018 worldwide interdisciplinary PhD workshop (IIPhDW). (2018). IEEE.
Bisong, E. Introduction to Scikit-learn. In Constructing Machine Studying and Deep Studying Fashions on Google Cloud Platform 215–229 (Springer, 2019).