Liu, Y. et al. Microstructural evolution and mechanical efficiency of in-situ TiB2/AlSi10Mg composite manufactured by selective laser melting. J. Alloy. Compd. 853, 157287. https://doi.org/10.1016/j.jallcom.2020.157287 (2021).
Gao, S. et al. Recrystallization-based grain boundary engineering of 316L chrome steel produced through selective laser melting. Acta Mater. 200, 366–377. https://doi.org/10.1016/j.actamat.2020.09.015 (2020).
Chen, X. & Qiu, C. In-situ growth of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy. Sci. Rep. 10, 15870. https://doi.org/10.1038/s41598-020-72627-x (2020).
Azarniya, A. et al. Additive manufacturing of Ti-6Al-4V components via laser steel deposition (LMD): Course of, microstructure, and mechanical properties. J. Alloy. Compd. 804, 163–191. https://doi.org/10.1016/j.jallcom.2019.04.255 (2019).
Kumara, C. et al. Microstructure modelling of laser steel powder directed vitality deposition of alloy 718. Addit. Manuf. 25, 357–364. https://doi.org/10.1016/j.addma.2018.11.024 (2019).
Busi, M. et al. A parametric neutron Bragg edge imaging research of additively manufactured samples handled by laser shock peening. Sci. Rep. 11, 14919. https://doi.org/10.1038/s41598-021-94455-3 (2021).
Tan, X. et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V through electron beam melting. Acta Mater. 97, 1–16. https://doi.org/10.1016/j.actamat.2015.06.036 (2015).
Günther, J. et al. Design of novel supplies for additive manufacturing—isotropic microstructure and excessive defect tolerance. Sci. Rep. 8, 1298. https://doi.org/10.1038/s41598-018-19376-0 (2018).
Loterie, D., Delrot, P. & Moser, C. Excessive-resolution tomographic volumetric additive manufacturing. Nat. Commun. 11, 852. https://doi.org/10.1038/s41467-020-14630-4 (2020).
Halevi, O., Jiang, H., Kloc, C. & Magdassi, S. Additive manufacturing of micrometric crystallization vessels and single crystals. Sci. Rep. 6, 36786. https://doi.org/10.1038/srep36786 (2016).
Srivatsan, T. S. & Sudarshan, T. S. (eds) Additive Manufacturing: Improvements, Advances, and Purposes (CRC Press, ****, 2015).
Kok, Y. et al. Anisotropy and heterogeneity of microstructure and mechanical properties in steel additive manufacturing: A important overview. Mater. Des. 139, 565–586. https://doi.org/10.1016/j.matdes.2017.11.021 (2018).
Zhang, D. et al. Grain refinement of alloys in fusion-based additive manufacturing processes. Metall. Mater. Trans. A 51A, 4341–4359. https://doi.org/10.1007/s11661-020-05880-4 (2020).
Vives, C. Electromagnetic refining of aluminum alloys by the CREM course of: Half II Particular sensible issues and their options. Metall. Trans. B 20, 631–643. https://doi.org/10.1007/BF02655920 (1989).
Fan, Z., Wang, Y., Xia, M. & Arumuganathar, S. Enhanced heterogeneous nucleation in AZ91D alloy by intensive soften shearing. Acta Mater. 57, 4891–4901. https://doi.org/10.1016/j.actamat.2009.06.052 (2009).
Watanabe, T., Ookawara, S., Seki, S., Yanagisawa, A. & Konuma, S. The impact of ultrasonic vibration on the mechanical properties of austenitic chrome steel weld. Q. J. Jpn. Weld. Soc. 21, 249–255. https://doi.org/10.2207/qjjws.21.249 (2003).
Cui, Y., Xu, C. & Han, Q. Impact of ultrasonic vibration on unmixed zone formation. Scripta Mater. 55, 975–978. https://doi.org/10.1016/j.scriptamat.2006.08.035 (2006).
Cui, Y., Xu, C. & Han, Q. Microstructure enchancment in weld steel utilizing ultrasonic vibrations. Adv. Eng. Mater. 9, 161–163. https://doi.org/10.1002/adem.200600228 (2007).
Yuan, T., Kou, S. & Luo, Z. Grain refining by ultrasonic stirring of the weld pool. Acta Mater. 106, 144–154. https://doi.org/10.1016/j.actamat.2016.01.016 (2016).
Thavamani, R., Balusamy, V., Nampoothiri, J., Subramanian, R. & Ravi, Okay. Mitigation of scorching cracking in inconel 718 superalloy by ultrasonic vibration throughout fuel tungsten arc welding. J. Alloy. Compd. 740, 870–878. https://doi.org/10.1016/j.jallcom.2017.12.295 (2018).
Kim, S.-B. et al. Quantitative strategy to realization of ultrasonic grain refinement of Al-7Si-2Cu-1Mg alloy. Sci. Rep. 9, 17812. https://doi.org/10.1038/s41598-019-54161-7 (2019).
Eskin, G. I. & Eskin, D. G. Ultrasonic Remedy of Mild Alloy Melts 2nd edn. (CRC Press, ***, 2014).
Qian, M., Ramirez, A. & Das, A. Ultrasonic refinement of magnesium by cavitation: Clarifying the function of wall crystals. J. Cryst. Development 311, 3708–3715. https://doi.org/10.1016/j.jcrysgro.2009.04.036 (2009).
Ramirez, A., Qian, M., Davis, B. & Wilks, T. Excessive-intensity ultrasonic grain refinement of magnesium alloys: Function of solute. Int. J. Solid Met. Res. 22, 260–263. https://doi.org/10.1179/136404609X367894 (2009).
Qian, M., Ramirez, A., Das, A. & StJohn, D. The impact of solute on ultrasonic grain refinement of magnesium alloys. J. Cryst. Development 312, 2267–2272. https://doi.org/10.1016/j.jcrysgro.2010.04.035 (2010).
Todaro, C. J. et al. Grain construction management throughout steel 3D printing by excessive depth ultrasound. Nat. Commun. 11, 142. https://doi.org/10.1038/s41467-019-13874-z (2020).
Wang, G. et al. Function of ultrasonic therapy, inoculation and solute within the grain refinement of business purity aluminium. Sci. Rep. 7, 9729. https://doi.org/10.1038/s41598-017-10354-6 (2017).
Lim, Y. C. et al. Impact of magnetic stirring on grain construction refinement half 2—nickel alloy weld overlays. Sci. Technol. Weld. Be a part of. 15, 400–406. https://doi.org/10.1179/136217110X12720264008231 (2010).
Yuan, T., Luo, Z. & Kou, S. Grain refining of magnesium welds by arc oscillation. Acta Mater. 116, 166–176. https://doi.org/10.1016/j.actamat.2016.06.036 (2016).
Wang, F., Williams, S. & Rush, M. Morphology investigation on direct present pulsed fuel tungsten arc welded additive layer manufactured Ti-6Al-4V alloy. The Int. J. Adv. Manuf. Technol. 57, 597–603. https://doi.org/10.1007/s00170-011-3299-1 (2011).
Lin, J. et al. Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing. Mater. Des. 102, 30–40. https://doi.org/10.1016/j.matdes.2016.04.018 (2016).
Jia, Y. et al. GaTe/CdS heterostructure with tunable digital properties through exterior electrical area and biaxial pressure. J. Alloy. Compd.. https://doi.org/10.1016/j.jallcom.2020.154965 (2020).
Gorunov, A. Additive manufacturing of Ti6Al4V components utilizing ultrasonic assisted direct vitality deposition. J. Manuf. Course of. 59, 545–556. https://doi.org/10.1016/j.jmapro.2020.10.024 (2020).
Todaro, C. J. et al. Grain refinement of chrome steel in ultrasound-assisted additive manufacturing. Addit. Manuf. 37, 101632. https://doi.org/10.1016/j.addma.2020.101632 (2021).
Pinkerton, A. J. & Li, L. An investigation of the impact of pulse frequency in laser multiple-layer cladding of chrome steel. Appl. Surf. Sci. 208–209, 405–410. https://doi.org/10.1016/S0169-4332(02)01420-4 (2003).
Wang, X. et al. Influences of pulse laser parameters on properties of AISI316L chrome steel thin-walled half by laser materials deposition. Choose. Laser Technol. 92, 5–14. https://doi.org/10.1016/j.optlastec.2016.12.021 (2017).
Tan, H. et al. Microstructure and properties of Ti-6Al-4V fabricated by low-power pulsed laser directed vitality deposition. J. Mater. Sci. Technol. 35, 2027–2037. https://doi.org/10.1016/j.jmst.2019.05.008 (2019).
Imbrogno, S., Alhuzaim, A. & Attallah, M. M. Affect of the laser supply pulsing frequency on the direct laser deposited inconel 718 skinny partitions. J. Alloy. Compd. 856, 158095. https://doi.org/10.1016/j.jallcom.2020.158095 (2021).
Majumdar, J. D. & Manna, I. Laser processing of supplies. Sadhana 28, 495–562. https://doi.org/10.1007/BF02706446 (2003).
Majumdar, J. D. & Manna, I. Laser materials processing. Int. Mater. Rev. 56, 341–388. https://doi.org/10.1179/1743280411Y.0000000003 (2011).
Sharma, A. & Yadava, V. Experimental evaluation of Nd-YAG laser slicing of sheet supplies—a overview. Choose. Laser Technol. 98, 264–280. https://doi.org/10.1016/j.optlastec.2017.08.002 (2018).
Gautam, G. D. & Pandey, A. Okay. Pulsed nd:yag laser beam drilling: A overview. Choose. Laser Technol. 100, 183–215. https://doi.org/10.1016/j.optlastec.2017.09.054 (2018).
Li, J. & Zuo, D. Laser sprucing of additive manufactured Ti6Al4V alloy: A overview. Choose. Eng.. https://doi.org/10.1117/1.OE.60.2.020901 (2021).
Prepared, J. F. Results of Excessive-Energy Laser Radiation (Tutorial Press, ***, 1971).
Hutchins, D. A. Mechanisms of pulsed photoacoustic technology. Can. J. Phys. 64, 1247–1264. https://doi.org/10.1139/p86-217 (1986).
Davies, S. J., Edwards, C., Taylor, G. S. & Palmer, S. B. Laser-generated ultrasound: Its properties, mechanisms and multifarious functions. J. Phys. D Appl. Phys. 26, 329–348. https://doi.org/10.1088/0022-3727/26/3/001 (1993).
Bunkin, F. V. & Komissarov, V. M. Optical excitation of sound waves. Sov. Phys. Acoust. 19, 203–211 (1973).
Bunkin, F. V. & Tribel’skiÄ, M. I. Nonresonant interplay of high-power optical radiation with a liquid. Sov. Phys. Uspekhi 23, 105–133. https://doi.org/10.1070/PU1980v023n02ABEH004904 (1980).
Anisimov, S. I. & Luk’yanchuk, B. S. Chosen issues of laser ablation idea. Uspekhi Fizicheskikh Nauk. 45, 293–324. https://doi.org/10.1070/PU2002v045n03ABEH000966 (2002).
Lyamshev, L. M. Laser Thermooptical Excitation of Sound (Nauka, ***, 1989) ([in Russian]).
Scruby, C. B. & Drain, L. E. Laser Ultrasonics Methods and Purposes (Taylor and Francis, ***, 1990).
Gusev, V. E. & Karabutov, A. A. Laser Optoacoustics (American Institute of Physics, ***, 1993).
Prepared, J. F. et al. (eds) LIA Handbook of Laser Supplies Processing (Laser Institute of America, ***, 2001).
Tuchin, V. V. (ed.) Handbook of Photonics for Biomedical Science (CRC Press, ***, 2010).
Popovich, A. A. et al. A laser ultrasonic method for learning the properties of merchandise manufactured by additive applied sciences. Russ. J. Nondestruct. Check. 52, 303–309. https://doi.org/10.1134/S1061830916060097 (2016).
Zhang, J. et al. Laser ultrasonic imaging for defect detection on steel additive manufacturing parts with tough surfaces. Appl. Choose. 59, 10380–10388. https://doi.org/10.1364/AO.405284 (2020).
Zhang, C., Dong, Y. & Ye, C. Current developments and novel functions of laser shock peening: A overview. Adv. Eng. Mater. 23, 2001216. https://doi.org/10.1002/adem.202001216 (2021).
Sundar, R. et al. Laser shock peening and its functions: A overview. Lasers Manuf. Mater. Course of. 6, 424–463. https://doi.org/10.1007/s40516-019-00098-8 (2019).
Peyre, P. & Fabbro, R. Laser shock processing: A overview of the physics and functions. Choose. Quantum Electron. 27, 1213–1229. https://doi.org/10.1007/BF00326477 (1995).
Munther, M. et al. Laser shock peening and its results on microstructure and properties of additively manufactured steel alloys: A overview. Eng. Res. Categorical. https://doi.org/10.1088/2631-8695/ab9b16 (2020).
Mazzinghi, P. & Margheri, F. A brief pulse, free operating, Nd:YAG laser for the cleansing of stone cultural heritage. Choose. Lasers Eng. 39, 191–202. https://doi.org/10.1016/S0143-8166(01)00133-6 (2003).
Khairallah, S., Anderson, A., Rubenchik, A. & King, W. Laser powder-bed fusion additive manufacturing: Physics of advanced soften circulate and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45. https://doi.org/10.1016/j.actamat.2016.02.014 (2016).
Shishkovsky, I. Laser Synthesis of Purposeful Gradient Mesostructures and Bulk Components (Fizmatlit, ***, 2009).
Krivilyov, M. et al. Synthesis of composite coatings utilizing speedy laser sintering of metallic powder mixtures. The Phys. Met. Metallogr. 114, 799–820. https://doi.org/10.1134/S0031918X13080073 (2013).
Yan, F., Xiong, W. & Faierson, E. J. Grain construction management of additively manufactured metallic supplies. Supplies 10, 1260. https://doi.org/10.3390/ma10111260 (2017).
Todaro, C. J. et al. The impact of ultrasonic soften therapy on macro-segregation and peritectic transformation in an Al-19Si-4Fe alloy. Metall. Mater. Trans. A 48A, 5579–5590. https://doi.org/10.1007/s11661-017-4325-1 (2017).
Todaro, C. J. et al. Impact of ultrasonic soften therapy on intermetallic part formation in a manganese-modified Al-17Si-2Fe alloy. Metall. Mater. Trans. A 271, 346–356. https://doi.org/10.1016/j.jmatprotec.2019.04.008 (2019).
Wang, B. et al. Ultrafast synchrotron X-ray imaging research of microstructure fragmentation in solidification underneath ultrasound. Acta Mater. 144, 505–515. https://doi.org/10.1016/j.actamat.2017.10.067 (2018).
Suslick, Okay. S. & Worth, G. J. Purposes of ultrasound to supplies chemistry. Annu. Rev. Mater. Sci. 29, 295–326. https://doi.org/10.1146/annurev.matsci.29.1.295 (1999).
Karavaev, A. V., Dremov, V. V. & Ionov, G. V. Atomistic modeling of the dislocation dynamics and analysis of static yield stress. EPJ Internet Conf. 94, 04007. https://doi.org/10.1051/epjconf/20159404007 (2015).
Karavaev, A. V., Dremov, V. V. & Ionov, G. V. Atomistic simulations of dislocation dynamics in (delta)-Pu-Ga alloys. J. Nucl. Mater. 496, 85–96. https://doi.org/10.1016/j.jnucmat.2017.09.005 (2017).
Karavaev, A. V., Dremov, V. V. & Sapozhnikov, F. A. Shear energy of nanocrystalline (delta)-phase Pu-Ga alloys: Atomistic simulations. J. Nucl. Mater. 524, 149–156. https://doi.org/10.1016/j.jnucmat.2019.07.002 (2019).
Dremov, V. V. & Karavaev, A. V. Atomistic simulations of energy properties of typical and nano-structured supplies. Proced. Manuf. 37, 599–604. https://doi.org/10.1016/j.promfg.2019.12.094 (2019).
Bonny, G., Terentyev, D., Pasianot, R. C., Ponce, S. & Bakaev, A. Interatomic potential to check plasticity in stainless steels: the FeNiCr mannequin alloy. Mannequin. Simul. Mater. Sci. Eng. 19, 085008. https://doi.org/10.1088/0965-0393/19/8/085008 (2011).
Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19. https://doi.org/10.1006/jcph.1995.1039 (1995).
LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/.
Monteiro, S. N., Margem, F., Candido, V. S. & da Silva Figueiredo, A.B.-H. Excessive temperature plastic instability and dynamic pressure ageing within the tensile habits of AISI 316 chrome steel. Mater. Res. 20(Suppl. 2), 506–511. https://doi.org/10.1590/1980-5373-MR-2016-0854 (2017).
Excessive-Temperature Traits of Stainless Steels. A Designers’ Handbook Collection Vol. 9004 (American Iron and Metal Institute, Washington, DC, 2011).
316/316L Stainless Metal. Product Information Bulletin (AK Metal Corp., West Chester, OH, 2016).
Blanket, I. T. E. R. Protect and Materials Information Base, ITER Documentation Collection Vol. 29 (IAEA, ***, 1991).
Xiong, Y., He, T., Lu, Y., Volinsky, A. A. & Cao, W. Tensile deformation temperature impression on microstructure and mechanical properties of AISI 316LN austenitic chrome steel. J. Mater. Eng. Carry out. 27, 1232–1240. https://doi.org/10.1007/s11665-018-3234-9 (2018).
Lu, Y., Solar, G., Xiao, X. & Mazumder, J. On-line stress measurenment throughout laser-aided metalic additive manufacturing. Sci. Rep. 9, 7630. https://doi.org/10.1038/s41598-019-39849-0 (2019).
Singh, Okay. Okay., Sangal, S. & Murty, G. S. Corridor-petch behaviour of 316l austenitic chrome steel at elevated temperatures. Mater. Sci. Technol. 18, 1168–1178. https://doi.org/10.1179/026708302225005927 (2002).