Zang, A. et al. Evaluation of induced seismicity in geothermal reservoirs—an summary. Geothermics 52, 6–21. https://doi.org/10.1016/j.geothermics.2014.06.005 (2014).
Maxwell, S. C., Rutledge, J., Jones, R. & Fehler, M. Petroleum reservoir characterization utilizing downhole microseismic monitoring. Geophysics 75(5), 75A129 (2010).
Goertz-Allmann, B. P., Kühn, D., Oye, V., Bohloli, B. & Aker, E. Combining microseismic and geomechanical observations to interpret storage integrity on the In Salah CCS website. Geophys. J. Int. 198, 447–461. https://doi.org/10.1093/gji/ggu010 (2014).
Vasco, D. W. et al. Monitoring and modeling caprock integrity on the In Salah carbon dioxide storage website, Algeria. Geol. Carbon Stor. Subsurf. Seals Caprock Integrity https://doi.org/10.1002/9781119118657.ch12 (2018).
Bauer, R. A., Carney, M. & Finley, R. J. Overview of microseismic response to CO2 injection into the Mt Simon saline reservoir on the Illinois Basin-Decatur Venture USA. J. Greenh. Gasoline Sci. Technol. 54, 378–388. https://doi.org/10.1016/j.iggc.2015.12.015 (2016).
Bauer, R. A., Will, R., Greenberg, S. E. & Whittaker, S. G. Illinois Basin-Decatur Venture, Chapter 19. In Geophysics and Geosequestration (eds Davis, T. et al.) 339–369 (Cambridge College Press, 2019). https://doi.org/10.1017/9781316480724.020.
Dando, B. D. E. et al. Relocating microseismicity from downhole monitoring of the Decatur CCS website utilizing a modified double-difference algorithm. Geophys. J. Int. 227(2), 1094–1122. https://doi.org/10.1093/gji/ggab255 (2021).
Langet, N. et al. Joint focal mechanism inversion utilizing downhole and floor monitoring on the Decatur, Illinois, CO2 injection website. Bull. Seismol. Soc. Am. 110(5), 2168–2187. https://doi.org/10.1785/0120200075 (2020).
Dichiarante, A. M. et al. Figuring out geological constructions by microseismic cluster and burst analyses complementing lively seismic interpretation. Tectonophysics 820, 229107. https://doi.org/10.1016/j.tecto.2021.229107 (2021).
Williams-Stroud, S. et al. Evaluation of microseismicity and reactivated fault measurement to evaluate the potential for felt occasions by CO2 injection within the Illinois Basin. Bull. Seismol. Soc. Am. 110(5), 2188–2204. https://doi.org/10.1785/0120200112 (2020).
Goertz-Allmann, B. P., Gibbons, S. J., Oye, V., Bauer, R. & Will, R. Characterization of induced seismicity patterns derived from inner construction in occasion clusters. J. Geophys. Res. Stable Earth 122, 3875–3894. https://doi.org/10.1002/2016JB013731 (2017).
Goertz-Allmann, B. P. et al. Lengthy-term seismic monitoring of reservoir dynamics at decatur. In Proceedings of the fifteenth Greenhouse Gasoline Management Applied sciences Convention. https://doi.org/10.2139/ssrn.3820454 (2021).
Guglielmi, Y., Birkholzer, J., Rutqvist, J., Jeanne, P. & Nussbaum, C. Can fault leakage happen earlier than or with out reactivation? Outcomes from an in situ fault reactivation experiment at Mont Terri. Power Proced. 114, 3167–3174. https://doi.org/10.1016/j.egypro.2017.03.1445 (2017).
Guglielmi, Y. et al. Discipline-scale fault reactivation experiments by fluid injection spotlight aseismic leakage in caprock analogs: Implications for CO2 sequestration. Int. J. Greenh. Gasoline Management 111, 103471. https://doi.org/10.1016/j.ijggc.2021.103471 (2021).
Zang, A. et al. Leisure injury management by way of fatigue-hydraulic fracturing in granitic rock as inferred from laboratory-, mine-, and field-scale experiments. Sci. Rep. 11(1), 1–16. https://doi.org/10.1038/s41598-021-86094-5 (2021).
Zang, A. & Stephansson, O. Stress Discipline of the Earth’s Crust (Springer, 2010). https://doi.org/10.1007/978-1-4020-8444-7.
Kim, Okay. H. et al. Assessing whether or not the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced occasion. Science 360(6392), 1007–1009. https://doi.org/10.1126/science.aat6081 (2018).
Maxwell, S. C., et al. Fault activation throughout hydraulic fracturing. In SEG Technical Program Expanded Abstracts 2009, 1552–1556. Society of Exploration Geophysicists. https://doi.org/10.1190/1.3255145 (2009).
Frailey, S. M. et al. Middle for the Geologic Storage of CO2 (GSCO2) (Last Report). United States: N. p. https://doi.org/10.2172/1691497 (2020).
Lockner, D., Byerlee, J. D., Kuksenko, V., Ponomarev, A. & Sidorin, A. Quasi-static fault development and shear fracture power in granite. Nature 350(6313), 39–42. https://doi.org/10.1038/350039a0 (1991).
Lockner, D. The function of acoustic emission within the research of rock fracture. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30(7), 883–899. https://doi.org/10.1016/0148-9062(93)90041-B (1993).
Ishida, T. et al. ISRM prompt technique for laboratory acoustic emission monitoring. Rock Mech. Rock Eng. 50(3), 665–674. https://doi.org/10.1007/s00603-016-1165-z (2017).
Gori, M., Rubino, V., Rosakis, A. J. & Lapusta, N. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics throughout a number of temporal scales. Proc. Natl. Acad. Sci. 118, 51. https://doi.org/10.1073/pnas.2023433118 (2021).
Manthei, G., Zang, A. & Grosse, C. U. Laboratory acoustic emission in research of rock mechanics. In Acoustic Emission Testing. Springer Tracts in Civil Engineering (eds Grosse, C. U. et al.) (Springer, 2022).
Lockner, D. A., Okubo, P. G. & Dietrich, J. H. Containment of stick slip failures on a simulated fault by pore fluid injection. Geophys. Res. Lett. 9, 801–804. https://doi.org/10.1029/GL009i008p00801 (1982).
Nasseri, M. H. B., Goodfellow, S. D., Lombos, L. & Younger, R. P. 3-D transport and acoustic properties of Fontainebleau sandstone throughout true-triaxial deformation experiments. Int. J. Rock Mech. Min. Sci. 69, 1–18. https://doi.org/10.1016/j.ijrmms.2014.02.014 (2014).
Stanchits, S., Burghardt, J. & Surdi, A. Hydraulic fracturing of heterogeneous rock monitored by acoustic emission. Rock Mech. Rock Eng. 48(6), 2513–2527. https://doi.org/10.1007/s00603-015-0848-1 (2015).
Stanchits, S., Desroches, J., Burghardt, J., Surdi, A. & Whitney N. Rock cloth affect on hydraulic fracture propagation. In 77th EAGE Convention and Exhibition 2015, Madrid, Spain, 1–4 June 2015. Convention Paper Tu-N107-01. https://doi.org/10.3997/2214-4609.201412632 (2015b).
Suarez-Rivera, R. et al. Defining three areas of hydraulic fracture connectivity, in unconventional reservoirs, assist designing completions with improved long-term productiveness. In Proceedings-SPE Annual Technical Convention and Exhibition, 7, Convention Paper, 5049–5062. 166505-MS SPE. https://doi.org/10.2118/166505-MS (2013).
Vera Rodriguez, I. & Stanchits, S. Spatial and temporal variation of seismic attenuation throughout hydraulic fracturing of a sandstone block subjected to triaxial stress. J. Geophys. Res. Stable Earth 122(11), 9012–9030. https://doi.org/10.1002/2017JB014602 (2017).
Vera Rodriguez, I., Stanchits, S. & Burghardt, J. Information-driven, in-situ, relative sensor calibration based mostly on waveform becoming second tensor inversion. Rock Mech. Rock Eng. 50, 891–911. https://doi.org/10.1007/s00603-016-1144-4 (2017).
McLaskey, G. C., Kilgore, B. D., Lockner, D. A. & Beeler, N. M. Laboratory generated M-6 earthquakes. Pure Appl. Geophys. 171(10), 2601–2615. https://doi.org/10.1007/s00024-013-0772-9 (2014).
Abercrombie, R. E. Earthquake supply scaling relationships from− 1 to five ML utilizing seismograms recorded at 2.5-km depth. J. Geophys. Res. Stable Earth 100(B12), 24015–24036. https://doi.org/10.1029/95JB02397 (1995).
Allmann, B. P. & Shearer, P. M. World variations of stress drop for average to giant earthquakes. J. Geophys. Res. Stable Earth 114, B1. https://doi.org/10.1029/2008JB005821 (2009).
Stroisz, A. M. et al. Monitoring of fracture reopening in sandstones. In fiftieth US Rock Mechanics/Geomechanics Symposium (2016)
Cerasi, P., Holt, R. M., Lavrov, A. & Stenebråten, J. F. Investigation of geomechanical and rock physics points associated to underground storage and monitoring of CO2. J. Ind. Geophys. Union 20, 20 (2016).
Cerasi, P. et al. Experimental investigation of injection strain results on fault reactivation for CO2 storage. Int. J. Inexperienced. Gasoline Management 78, 218–227. https://doi.org/10.1016/j.ijggc.2018.08.011 (2018).
Babarinde, O. et al. Evaluation of injection-induced slippage in a big sandstone block by way of laser scanning, acoustic emissions, and pore strain modifications with stress. AGU Fall Meet. Abstr. 2018, S33C-0609 (2018).
Oye, V., et al. Dynamics of Stick-Slip Sliding Induced by Fluid Injection in Giant Sandstone Block. In eightieth EAGE Convention and Exhibition 2018 (Vol. 2018, No. 1, pp. 1–5). European Affiliation of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201800718 (2018).
Oye, V. & Roth, M. Automated seismic occasion location for hydrocarbon reservoirs. Comput. Geosci. 29(7), 851–863. https://doi.org/10.1016/S0098-3004(03)00088-8 (2003).
Gharti, H. N., Oye, V., Roth, M. & Kühn, D. Automated microearthquake location utilizing envelope stacking and strong international optimization. Geophysics 75, MA27. https://doi.org/10.1190/1.3432784 (2010).
Olsen-Kettle, et al. Evaluation of slip-weakening frictional legal guidelines with static restrengthening and their implications on the scaling, asymmetry, and mode of dynamic rupture on homogeneous and bimaterial interfaces. J. Geophys. Res. 113, B08307. https://doi.org/10.1029/2007JB005454 (2008).
Chounet, A., Vallée, M., Causse, M. & Courboulex, F. World catalog of earthquake rupture velocities exhibits anticorrelation between stress drop and rupture velocity. Tectonophysics 733, 148–158. https://doi.org/10.1016/j.tecto.2017.11.005 (2018).
Rowe, C. D. & Griffith, W. A. Do faults protect a file of seismic slip: A second opinion. J. Struct. Geol. 78, 1–26. https://doi.org/10.1016/j.jsg.2015.06.006 (2015).
Deichmann, N. & Giardini, D. Earthquakes induced by the stimulation of an enhanced geothermal system beneath Basel (Switzerland). Seismol. Res. Lett. 80(5), 784–798. https://doi.org/10.1785/gssrl.80.5.784 (2009).
Shapiro, S. A., Kim, Okay. H. & Ree, J. H. Magnitude and nucleation time of the 2017 Pohang Earthquake level to its predictable synthetic triggering. Nat. Commun. 12(1), 1–9. https://doi.org/10.1038/s41467-021-26679-w (2021).
Guglielmi, Y., Cappa, F., Avouac, J. P., Henry, P. & Elsworth, D. Seismicity triggered by fluid injection–induced aseismic slip. Science 348(6240), 1224–1226. https://doi.org/10.1126/science.aab0476 (2015).
Scholz, C. H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Ame. 58(1), 399–415. https://doi.org/10.1785/BSSA0580010399 (1968).