Quinones, R. A., Fuentes, M., Montes, R. M., Soto, D. & Leon-Munoz, J. Environmental points in Chilean salmon farming: A evaluate. Rev. Aquac. 11, 375–402. https://doi.org/10.1111/raq.12337 (2019).
Gallardo-Escárate, C. et al. The race between host and sea lice within the Chilean salmon farming: A genomic method. Rev. Aquac. https://doi.org/10.1111/raq.12334 (2019).
Gonzalez, L. & Carvajal, J. Life cycle of Caligus rogercresseyi, (Copepoda:Caligidae) parasite of Chilean reared salmonids. Aquaculture 220, 101–117. https://doi.org/10.1016/S0044-8486(02)00512-4 (2003).
Johnson, S. C., Treasurer, J. W., Bravo, S., Nagasawa, Okay. & Kabata, Z. A evaluate of the affect of parasitic copepods on marine aquaculture. Zool. Stud. 43, 229–243 (2004).
Dresdner, J. et al. Affect of Caligus remedies on unit prices of heterogeneous salmon farms in Chile. Aquacult. Econ. Manag. 23, 1–27. https://doi.org/10.1080/13657305.2018.1449271 (2019).
Goncalves, A. T. et al. Nanopore sequencing of microbial communities reveals the potential position of sea lice as a reservoir for fish pathogens. Sci. Rep. 10, 1–12. https://doi.org/10.1038/s41598-020-59747-0 (2020).
Hahn, M. A. & Dheilly, N. M. Experimental fashions to review the position of microbes in host–parasite interactions. Entrance. Microbiol. 7, 1300. https://doi.org/10.3389/fmicb.2016.01300 (2016).
Rosenberg, E. & Zilber-Rosenberg, I. Symbiosis and growth: The hologenome idea. Beginning Defects Res. Half C Embryo Right now Rev. 93, 56–66. https://doi.org/10.1002/bdrc.20196 (2011).
Blaxter, M. & Koutsovoulos, G. The evolution of parasitism in Nematoda. Parasitology 25, 1–14 (2014).
Chaston, J. M. et al. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: Convergent life from divergent genomes. PLoS ONE 6, e27909. https://doi.org/10.1371/journal.pone.0027909 (2011).
Hoerauf, A. et al. Tetracycline remedy targets intracellular micro organism within the filarial nematode Litomosoides sigmodontis and leads to filarial infertility. J. Clin. Investig. 103, 11–18. https://doi.org/10.1172/JCI4768 (1999).
Fichorova, R. N. et al. Endobiont viruses sensed by the human host—past standard antiparasitic remedy. PLoS ONE 7, e48418. https://doi.org/10.1371/journal.pone.0048418 (2012).
Kalluri, S., Gilruth, P., Rogers, D. & Szczur, M. Surveillance of arthropod vector-borne infectious ailments utilizing distant sensing methods: A evaluate. PLoS Pathog. 3, 1361–1371. https://doi.org/10.1371/journal.ppat.0030116 (2007).
Hansen, B. & Bech, G. Micro organism related to a marine planktonic copepod in tradition. 1. Bacterial genera in seawater, physique floor, intestines and fecal pellets and succession throughout fecal pellet degradation. J. Plankton Res. 18, 257–273. https://doi.org/10.1093/plankt/18.2.257 (1996).
Dumontet, S. et al. Ecological relationship between Aeromonas and Vibrio spp. and planktonic copepods within the coastal marine surroundings in southern Italy. Comp. Immunol. Microb. 19, 245–254. https://doi.org/10.1016/0147-9571(96)00012-4 (1996).
Vezzulli, L., Pruzzo, C., Huq, A. & Colwell, R. R. Environmental reservoirs of Vibrio cholerae and their position in cholera. Environ. Microbiol. Rep. 2, 27–33. https://doi.org/10.1111/j.1758-2229.2009.00128.x (2010).
Heidelberg, J. F., Heidelberg, Okay. B. & Colwell, R. R. Micro organism of the gamma-subclass Proteobacteria related to zooplankton in Chesapeake Bay. Appl. Environ. Microbiol. 68, 5498–5507. https://doi.org/10.1128/Aem.68.11.5498-5507.2002 (2002).
Sepulveda, F. A., Torres, J. F., Infante, C. D. & Gonzalez, M. T. Potential position of ectoparasites (Zeuxapta seriolae and Caligus lalandei) within the transmission of pathogenic micro organism in yellowtail kingfish Seriola lalandi, inferred from cultivable microbiota and molecular analyses. J. Fish Dis. 40, 979–985. https://doi.org/10.1111/jfd.12582 (2017).
Jakob, E., Barker, D. E. & Garver, Okay. A. Vector potential of the salmon louse Lepeophtheirus salmonis within the transmission of infectious haematopoietic necrosis virus (IHNV). Dis. Aquat. Org. 97, 155–165. https://doi.org/10.3354/dao02414 (2011).
Nese, L. & Enger, O. Isolation of Aeromonas salmonicida from salmon lice Lepeophtheirus salmonis and marine plankton. Dis. Aquat. Org. 16, 79–81. https://doi.org/10.3354/dao016079 (1993).
Nylund, A., Wallace, C. J., Hovland, T., Boxshall, G. A. & A Defaye, D. The attainable position of Lepeophtheirus salmonis (Krøyer) within the transmission of infectious salmon anaemia. In Convention Proceedings (1993).
Yaffe, E. & Relman, D. A. Monitoring microbial evolution within the human intestine utilizing Hello-C reveals intensive horizontal gene switch, persistence and adaptation. Nat. Microbiol. 5, 343. https://doi.org/10.1038/s41564-019-0625-0 (2020).
DeMaere, M. Z. & Darling, A. E. bin3C: Exploiting Hello-C sequencing information to precisely resolve metagenome-assembled genomes. Genome Biol. 20, 1–16. https://doi.org/10.1186/s13059-019-1643-1 (2019).
Stalder, T., Press, M. O., Sullivan, S., Liachko, I. & High, E. M. Linking the resistome and plasmidome to the microbiome. ISME J. 13, 2437–2446. https://doi.org/10.1038/s41396-019-0446-4 (2019).
Avendano-Herrera, R., Collarte, C., Saldarriaga-Cordoba, M. & Irgang, R. New salmonid hosts for Tenacibaculum species: Enlargement of tenacibaculosis in Chilean aquaculture. J. Fish Dis. 43, 1077–1085. https://doi.org/10.1111/jfd.13213 (2020).
Gallardo-Escárate, C. et al. Chromosome-scale genome meeting of the ocean louse Caligus rogercresseyi. Figshare https://doi.org/10.6084/m9.figshare.11780658.v1 (2020).
Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. The second pores and skin: Ecological position of epibiotic biofilms on marine organisms. Entrance. Microbiol. 3, 292. https://doi.org/10.3389/fmicb.2012.00292 (2012).
Barker, D. E., Braden, L. M., Coombs, M. P. & Boyce, B. Preliminary research on the isolation of micro organism from sea lice, Lepeophtheirus salmonis, infecting farmed salmon in British Columbia, Canada. Parasitol. Res. 105, 1173–1177. https://doi.org/10.1007/s00436-009-1523-9 (2009).
Dalvin, S. et al. Microbial communities related to the parasitic copepod Lepeophtheirus salmonis. Mar. Genom. 49, 100688. https://doi.org/10.1016/j.margen.2019.05.003 (2020).
Overstreet, R. M., Jovonovich, J. & Ma, H. W. Parasitic crustaceans as vectors of viruses, with an emphasis on three penaeid viruses. Integr. Comp. Biol. 49, 127–141. https://doi.org/10.1093/icb/icp033 (2009).
Sepúlveda, F. A., Torres, J. F., Infante, C. D. & González, M. T. Potential position of ectoparasites (Zeuxapta seriolae and Caligus lalandei) within the transmission of pathogenic micro organism in yellowtail kingfish Seriola lalandi, inferred from cultivable microbiota and molecular analyses. J. Fish Dis. 40, 979–985. https://doi.org/10.1111/jfd.12582 (2017).
Novak, C. W., Lewis, D. L., Collicutt, B., Verkaik, Okay. & Barker, D. E. Investigations on the position of the salmon louse, Lepeophtheirus salmonis (Caligidae), as a vector within the transmission of Aeromonas salmonicida subsp. salmonicida. J. Fish Dis. 39, 1165–1178. https://doi.org/10.1111/jfd.12449 (2016).
Avendano-Herrera, R. et al. Isolation, characterization and virulence potential of Tenacibaculum dicentrarchi in salmonid cultures in Chile. Transbound. Emerg. Dis. 63, 121–126. https://doi.org/10.1111/tbed.12464 (2016).
Klakegg, O., Abayneh, T., Fauske, A. Okay., Fulberth, M. & Sorum, H. An outbreak of acute illness and mortality in Atlantic salmon (Salmo salar) post-smolts in Norway attributable to Tenacibaculum dicentrarchi. J. Fish Dis. 42, 789–807. https://doi.org/10.1111/jfd.12982 (2019).
Wilson, T. Okay., Douglas, M. & Dunn, V. First identification in Tasmania of fish pathogens Tenacibaculum dicentrarchi and T. soleae and multiplex PCR for these organisms and T. maritimum. Dis. Aquat. Organ. 136, 219–226. https://doi.org/10.3354/dao03407 (2019).
Labra, A., Bravo, S. & Marshall, S. H. Defining the position of Caligus rogercresseyi in transmission and spreading of Piscirickettsia salmonis. Aquaculture 528, 735489. https://doi.org/10.1016/j.aquaculture.2020.735489 (2020).
Lew-Tabor, A. E. & Valle, M. R. A evaluate of reverse vaccinology approaches for the event of vaccines in opposition to ticks and tick borne ailments (vol 7, pg 573, 2016). Ticks Tick-Borne Dis. 7, 1236–1237. https://doi.org/10.1016/j.ttbdis.2016.07.008 (2016).
Ma, J., Bruce, T. J., Jones, E. M. & Cain, Okay. D. A evaluate of fish vaccine growth methods: Standard strategies and trendy biotechnological approaches. Microorganisms 7, 569. https://doi.org/10.3390/microorganisms7110569 (2019).
Gomez, F. A. et al. Proof of the presence of a useful Dot/Icm kind IV-B secretion system within the fish bacterial pathogen Piscirickettsia salmonis. PLoS ONE 8, e54934. https://doi.org/10.1371/journal.pone.0054934 (2013).
Valenzuela-Miranda, D., Valentina, V.-M., Gustavo, N.-A. & Cristian, G.-E. Lengthy-term serial tradition of Piscirickettsia salmonis results in a genomic and transcriptomic reorganization affecting bacterial in vitro virulence. Figshare. https://doi.org/10.6084/m9.figshare.12047238.v1 (2020).
Yu, Y. X. et al. Full genome sequence of Photobacterium damselae subsp. damselae pressure SSPD1601 remoted from deep-sea cage-cultured Sebastes schlegelii with septic pores and skin ulcer. Int. J. Genomics https://doi.org/10.1155/2019/4242653 (2019).
Perez-Pascual, D. et al. The whole genome sequence of the fish pathogen Tenacibaculum maritimum offers insights into virulence mechanisms. Entrance. Microbiol. 8, 1542. https://doi.org/10.3389/fmicb.2017.01542 (2017).
Teo, J. W. P., Tan, T. M. C. & Poh, C. L. Genetic determinants of tetracycline resistance in Vibrio harveyi. Antimicrob. Brokers Chem. 46, 1038–1045 (2002).
Homosexual, Okay. et al. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin. Infect. Dis. 43, 297–304 (2006).
Santos, L. & Ramos, F. Antimicrobial resistance in aquaculture: Present information and alternate options to deal with the issue. Int. J. Antimicrob. Brokers 52, 135–143 (2018).
Chen, Y. P., Lee, S. H., Chou, C. H. & Tsai, H. J. Detection of florfenicol resistance genes in Riemerella anatipestifer remoted from geese and geese. Vet. Microbiol. 154, 325–331. https://doi.org/10.1016/j.vetmic.2011.07.012 (2012).
Romero-Soto, I. C. et al. Degradation of chloramphenicol in artificial and aquaculture wastewater utilizing electrooxidation. J. Environ. Qual. 47, 805–811. https://doi.org/10.2134/jeq2017.12.0475 (2018).
Chen, B. et al. Complicated air pollution of antibiotic resistance genes on account of beta-lactam and aminoglycoside use in aquaculture farming. Water Res. 134, 200–208. https://doi.org/10.1016/j.watres.2018.02.003 (2018).
Miranda, C. D., Godoy, F. A. & Lee, M. R. Present standing of using antibiotics and the antimicrobial resistance within the Chilean salmon farms. Entrance. Microbiol. 9, 1284. https://doi.org/10.3389/fmicb.2018.01284 (2018).
Sernapesca. Informe Sobre Uso de Antimicrobianos en la Salmonicultura Nacional. Valparaiso. http://www.sernapesca.cl (2020).
Akinbowale, O. L., Peng, H. & Barton, M. D. Range of tetracycline resistance genes in micro organism from aquaculture sources in Australia. J. Appl. Microbiol. 103, 2016–2025. https://doi.org/10.1111/j.1365-2672.2007.03445.x (2007).
Esposti, M. D. & Romero, E. M. The useful microbiome of arthropods. PLoS ONE 12, e0176573. https://doi.org/10.1371/journal.pone.0176573 (2017).
Zientz, E., Dandekar, T. & Gross, R. Metabolic interdependence of obligate intracellular micro organism and their insect hosts. Microbiol. Mol. Biol. Rev. 68, 745–770. https://doi.org/10.1128/MMBR.68.4.745-770.2004 (2004).
Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86. https://doi.org/10.1038/35024074 (2000).
Hansen, A. Okay. & Moran, N. A. Aphid genome expression reveals host-symbiont cooperation within the manufacturing of amino acids. Proc. Natl. Acad. Sci. USA 108, 2849–2854. https://doi.org/10.1073/pnas.1013465108 (2011).
Wu, D. et al. Metabolic complementarity and genomics of the twin bacterial symbiosis of sharpshooters. PLoS Biol. 4, 1079–1092. https://doi.org/10.1371/journal.pbio.0040188 (2006).
Wilkinson, T. L. The elimination of intracellular microorganisms from bugs: An evaluation of antibiotic-treatment within the pea aphid (Acyrthosiphon pisum). Compar. Biochem. Physiol. Mol. Integr. Physiol. 119, 871–881. https://doi.org/10.1016/S1095-6433(98)00013-0 (1998).
Gallardo-Escárate, C. et al. Chromosome-scale genome meeting of the ocean louse Caligus rogercresseyi by SMRT sequencing and Hello-C evaluation. Sci. Knowledge 8, 1–12. https://doi.org/10.1038/s41597-021-00842-w (2021).
Li, D. H., Liu, C. M., Luo, R. B., Sadakane, Okay. & Lam, T. W. MEGAHIT: An ultra-fast single-node answer for giant and complicated metagenomics meeting through succinct de Bruijn graph. Bioinformatics 31, 1674–1676. https://doi.org/10.1093/bioinformatics/btv033 (2015).
Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: Analysis of metagenome assemblies. Bioinformatics 32, 1088–1090. https://doi.org/10.1093/bioinformatics/btv697 (2016).
Li, H. & Durbin, R. Quick and correct brief learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).
Valenzuela Miranda, D.G.-E.C., Valenzuela-Muñóz, V., Núñez-Acuña, G. & Goncalves, A. T. Proximity ligation technique for the genomic reconstruction of microbial communities related to the ectoparasite Caligus rogercresseyi. Figshare https://doi.org/10.6084/m9.figshare.16980616.v1 (2021).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. https://doi.org/10.1101/gr.186072.114 (2015).
Ondov, B. D. et al. Mash: Quick genome and metagenome distance estimation utilizing MinHash. Genome Biol. 17, 1–14. https://doi.org/10.1186/s13059-016-0997-x (2016).
Krzywinski, M. et al. Circos: An data aesthetic for comparative genomics. Genome Res. 19, 1639–1645. https://doi.org/10.1101/gr.092759.109 (2009).
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: An computerized genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185. https://doi.org/10.1093/nar/gkm321 (2007).