Pachauri, R. Okay. et al. Local weather Change 2014: Synthesis Report. Contribution of Working Teams I. II and III to the Fifth Evaluation Report of the Intergovernmental Panel on Local weather Change (2014).
Worldwide Geosphere Biosphere Programme (IGBP). Ocean acidification abstract for policymakers (2013).
Kroeker, Okay. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interplay with warming. Glob. Change Biol. 19, 1884–1896 (2013).
Vargas, C. A. et al. Species-specific responses to ocean acidification ought to account for native adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0084 (2017).
Dupont, S., Corridor, E., Calosi, P. & Lundve, B. First proof of altered sensory high quality in a shellfish uncovered to decreased pH related to ocean acidification. J. Shellfish Res. 33, 857–861 (2014).
Lemasson, A. J. et al. Sensory qualities of oysters unaltered by a brief publicity to mixed elevated pCO2 and temperature. Entrance. Mar. Sci. 4, 352. https://doi.org/10.3389/fmars.2017.00352 (2017).
San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 1–9 (2019).
Shahidi, F. & Cadwallader, Okay. R. Taste and lipid chemistry of seafoods: an summary (1997).
Nelson, G. et al. An amino acid style receptor. Nature 416, 199–202 (2002).
Guillen, J. et al. World seafood consumption footprint. Ambio 48(2), 111–122 (2019).
FAO. The state of world fisheries and aquaculture. Contributing to meals safety and diet for all. FAO, Rome (2016).
FAO. The state of world fisheries and aquaculture—sustainability in motion (2020).
Gerland, P. et al. World inhabitants stabilization unlikely this century. Science 346(6206), 234–237 (2014).
Minh, N. P., Nhi, T. T. Y., Hiep, P. T. H., Nhan, D. T. & Anh, S. T. High quality traits of dried salted black tiger shrimp (Penaeus monodon) affected by completely different pre-treatment and drying variables. J. Pharm. Sci. Res. 11, 1377–1381 (2019).
FAO. The state of meals and agriculture (1980).
Solms, J. Style of amino acids, peptides, and proteins. J. Agric. Meals Chem. 17(4), 686–688 (1969).
Jiro, Okay., Akira, S. & Akimitsu, Okay. The contribution of peptides and amino acids to the style of foodstuffs. J. Agric. Meals Chem. 17(4), 689–695 (1969).
Schiffman, S. S., Sennewald, Okay. & Gagnon, J. Comparability of style qualities and thresholds of D-and L-amino acids. Physiol. Behav. 27(1), 51–59 (1981).
Kawai, M., Sekine-Hayakawa, Y., Okiyama, A. & Ninomiya, Y. Gustatory sensation of L- and D-amino acids in people. Amino Acids 43, 2349–2358 (2012).
Dissanayake, A., Clough, R., Spicer, J. I. & Jones, M. B. Results of hypercapnia on acid–base steadiness and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat. Biol. 11, 27–36 (2010).
Ries, J., Choen, A. L. & McCorkle, D. C. Marine calcifiers exhibit blended responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).
Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification web site pH is a polyphyletic however not all the time governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).
Corteel, M. et al. Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon. Aquac. Int. 20, 13–18 (2011).
Taylor, J. R., Gilleard, J. M., Allen, M. C. & Deheyn, D. D. Results of CO2-induced pH discount on the exoskeleton construction and biophotonic properties of the shrimp Lysmata californica. Sci. Rep. 5, 10608 (2015).
McLean, E. L., Katenka, N. V. & Seibel, B. A. Decreased development and elevated shell illness in early benthic section Homarus americanus in response to elevated CO2. Mar. Ecol. Prog. Ser. 596, 113–126 (2018).
Chen, S. M. & Chen, J. C. Impact of low pH on the acid-base steadiness, osmolality and ion concentrations of large freshwater prawn Macrobrachium rosenbergii. J. Fish. Soc. Taiwan 30, 227–239 (2003).
Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. & Ishimatsu, A. Lengthy-term results of predicted future seawater CO2 situations on the survival and development of the marine shrimp Palaemon pacificus. J. Exp. Mar. Biol. Ecol. 367, 41–46 (2008).
Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Future excessive CO2 within the intertidal might compromise grownup barnacle Semibalanus balanoides survival and embryonic improvement charge. Mar. Ecol. Prog. Ser. 389, 193–202 (2009).
Cameron, J. N. & Iwama, G. Okay. Compensation of progressive hypercapnia in channel catfish and blue crabs. J. Exp. Biol. 133, 183–197 (1987).
Pane, E. F. & Barry, J. P. Extracellular acid-base regulation throughout short-term hypercapnia is efficient in a shallow-water crab, however ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9 (2007).
Lowder, Okay. B., Allen, M. C., Day, J. M. D., Deheyn, D. D. & Taylor, J. R. A. Evaluation of ocean acidification and warming on the expansion, calcification, and biophotonics of a California grass shrimp. ICES J. Mar. Sci. 74, 1150–1158 (2017).
Pörtner, H. O., Langenbunh, M. & Reipschläger, A. Organic affect of elevated ocean CO2 concentrations: Classes from animal physiology and earth historical past. J. Oceanogr. 60, 705–718 (2004).
Dissanayake, A. & Ishimatsu, A. Synergistic results of elevated CO2 and temperature on the metabolic scope and exercise in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeide). ICES J. Mar. Sci. 68, 1147–1154 (2011).
Pan, L. Q., Zhang, L. J. & Liu, H. Y. Results of salinity and pH on ion-transport enzyme actions, survival and development of Litopenaeus vannamei postlarvae. Aquaculture 273, 711–720 (2007).
Rathburn, C. Okay. et al. Transcriptomic responses of juvenile Pacific whiteleg shrimp, Litopenaeus vannamei, to hypoxia and hypercapnic hypoxia. Physiol. Genomics 45, 794–807 (2013).
Yu, Q. R. et al. Progress and well being responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquacul. Rep. 16, 100280 (2020).
Chen, J. C., Chen, C. T. & Cheng, S. Y. Nitrogen excretion and modifications of hemocyanin, protein and free amino acid ranges within the hemolymph of Penaeus monodon uncovered to completely different concentrations of ambient ammonia-N at completely different salinity ranges. Mar. Ecol. Prog. Ser. 110, 85–94 (1994).
Dayal, J. S., Ambasankar, Okay., Rajendran, R., Rajaram, V. & Muralidhar, M. Impact of abiotic salinity stress on haemolymph metabolic profiles in cultured tiger shrimp Penaeus monodon. Int. J. Bio-resour. Stress Manag. 4, 339–343 (2013).
Ardo, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24, 238–242 (2006).
Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).
Liao, H. et al. Impression of ocean acidification on the power metabolism and antioxidant responses of the Yesso scallop (Patinopecten yessoensis). Entrance. Physiol. 27, 1967 (2019).
Richard, L. et al. The impact of choline and cystine on the utilisation of methionine for protein accretion, remethylation and trans-sulfuration in juvenile shrimp Penaeus monodon. Br. J. Nutr. 28, 825–835 (2011).
Peng, B., Huang, R. & Zhou, X. oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed. Res. Int. 2017, 9584932 (2017).
DeVries, M. S. et al. Stress physiology and weapon integrity of intertidal mantis shrimp beneath future ocean situations. Sci. Rep. 6, 38637 (2016).
Dupont, S. & Thorndyke, M. C. Impression of CO2-driven ocean acidification on invertebrates early life-history—What we all know, what we have to know and what we will do. Biogeosci. Talk about. 6, 3109–3131 (2009).
Weerathunga, V. V. et al. Impacts of pH on the health and immune system of pacific white shrimp. Entrance. Mar. Sci. https://doi.org/10.3389/fmars.2021.748837 (2021).
Fuller, P. L. et al. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, within the western north Atlantic and Gulf of Mexico. Aquat. Invasions 9, 59–70 (2014).
Lewis, E. & Wallace, D. Program developed for CO2 system calculations (Environmental System Science Information Infrastructure for a Digital Ecosystem, 1998).
Dickson, A. G. & Millero, F. J. A comparability of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Half A Oceanogr. Res. Pap. 34, 1733–1743 (1987).
AOAC. Technique 991.42 & 993.19. Official strategies of study (sixteenth ed.). Washington, DC: Affiliation of Official Analytical Chemists (1995).
Motoh, H. Biology and ecology of Penaeus monodon. Iloilo Metropolis, Philippines. Aquaculture Division, Southeast Asian Fisheries Improvement Middle (1985).
Mayor, D. J., Matthews, C., Prepare dinner, Okay., Zuur, A. F. & Hay, S. CO2-induced acidification impacts hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350, 91–97 (2007).