Amare, M. G. & Keller, N. P. Molecular mechanisms of Aspergillus flavus secondary metabolism and growth. Fungal Genet. Biol. 66, 11–18 (2014).
Bennett, J. W. & Klich, M. Mycotoxins. Clin. Microbiol. Rev. 16, 497–516 (2009).
Hoffmeister, D. & Keller, N. P. Pure merchandise of filamentous fungi: Enzymes, genes, and their regulation. Nat. Prod. Rep. 24, 393–416 (2007).
Sangare, L. et al. Aflatoxin B1 degradation by a pseudomonas pressure. Toxins 7, 3028–3040 (2015).
Tai, B., Chang, J., Liu, Y. & Xing, F. Latest progress of the impact of environmental components on Aspergillus flavus development and aflatoxins manufacturing on meals. Meals Qual. Saf. 4, 21–28 (2020).
Caceres, I. et al. Aflatoxin biosynthesis and genetic regulation: A overview. Toxins 12, 150. https://doi.org/10.3390/toxins12030150 (2020).
Probst, C., Bandyopadhyay, R., Worth, L. E. & Cotty, P. J. Identification of atoxigenic Aspergillus flavus isolates to cut back aflatoxin contamination of maize in Kenya. Plant Dis. 95, 212–218 (2011).
Alshannaq, A. F. et al. Controlling aflatoxin contamination and propagation of Aspergillus flavus by a soy-fermenting Aspergillus oryzae pressure. Sci. Rep. 8, 16871. https://doi.org/10.1038/s41598-018-35246-1 (2018).
Kinyungu, S., Isakeit, T., Ojiambo, P. & Woloshuk, C. Unfold of Aspergillus flavus and aflatoxin accumulation in postharvested maize handled with biocontrol merchandise. J. Saved Prod. Res. 84, 101519. https://doi.org/10.1016/j.jspr.2019.101519 (2019).
Mendéz-Albores, A., Veles-Medina, J., Urbina-Álvarez, E., Martínez-Bustos, F. & Moreno-Martínez, E. Impact of citric acid on aflatoxin degradation and on useful and textural properties of extruded sorghum. Anim. Feed Sci. Technol. 150, 316–329 (2009).
Jalili, M. & Jinap, S. Function of sodium hydrosulphite and stress on the discount of aflatoxins and ochratoxin A in black pepper. Meals Management 27, 11–15 (2012).
Paranagama, P., Abeysekera, Ok., Abeywickrama, Ok. & Nugaliyadde, L. Fungicidal and anti-aflatoxigenic results of the important oil of Cymbopogon citratus (DC.) Stapf. (Lemongrass) towards Aspergillus flavus hyperlink. remoted from saved rice. Lett. Appl. Microbiol. 37, 86–90 (2003).
El Khoury, R. et al. Identification of the anti-aflatoxinogenic exercise of Micromeria graeca and elucidation of its molecular mechanism in Aspergillus flavus. Toxins 9, 87. https://doi.org/10.3390/toxins9030087 (2017).
Kohiyama, C. Y. et al. Antifungal properties and inhibitory results upon aflatoxin manufacturing of Thymus vulgaris L. by Aspergillus flavus hyperlink. Meals Chem. 173, 1006–1010 (2015).
Wang, S., Xie, J. C., Yang, W. & Solar, B. G. Preparative separation and purification of alkylamides from Zanthoxylum bungeanum Maxim. by high-speed counter-current chromatography. J. Liq. Chromatogr. Relat. Technol. 34, 2640–2652 (2011).
Zhang, M. et al. Zanthoxylum bungeanum Maxim. (Rutaceae): A scientific overview of its conventional makes use of, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int. J. Mol. Sci. 18, 2172 (2017).
Zhang, Y. J., Wang, D. M., Yang, L. N., Zhou, D. & Zhang, J. F. Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their construction and antioxidant exercise. PLoS ONE 9, 105725. https://doi.org/10.1371/journal.pone.0105725 (2014).
Li, X. D. & Xue, H. L. Antifungal exercise of the important oil of Zanthoxylum bungeanum, and its main constituent on Fusarium sulphureum and dry rot of potato tubers. Phytoparasitica 42, 509–517 (2014).
Tang, Y. F., Tang, X. H., Zhang, M. L., Yang, Q. Q. & Hu, T. Composition and antimicrobial exercise of important oil extracted from Zanthoxylum bungeanum Maxim.. Nat. Sci. J. Xiangtan Univ. 35, 64–69 (2013).
Abbas, A., Hussien, T. & Yli-Mattila, T. A polyphasic strategy to match the genomic profiles of aflatoxigenic and non-aflatoxigenic isolates of Aspergillus part flavi. Toxins 12, 56. https://doi.org/10.3390/toxins12010056 (2020).
Zhao, L.-L., Feng, S.-J., Tian, J.-Y., Wei, A.-Z. & Yang, T.-X. Inner transcribed spacer 2 (ITS2) barcodes: A great tool for figuring out Chinese language Zanthoxylum. Appl. Plant Sci. 6, 1157 (2018).
Kumar, S., Stecher, G. & Tamura, Ok. MEGA7: Molecular evolutionary genetics evaluation model 7.0 for greater datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Fundamental native alignment search instrument. J. Mol. Biol. 215, 403–410 (1990).
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).
Velioglu, Y. S., Mazza, G., Gao, L. & Oomah, B. D. Antioxidant exercise and complete phenolics in chosen fruits, greens, and grain merchandise. J. Agric. Meals Chem. 46, 4113–4117 (1998).
Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. Estimation of complete flavonoid content material in propolis by two complementary colorimetric strategies. J. Meals Drug Anal. 10, 178–182 (2002).
Re, R. et al. Antioxidant exercise making use of an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999).
Zhang, Y., Luo, Z., Wang, D., He, F. & Li, D. Phytochemical profiles and antioxidant and antimicrobial actions of the leaves of Zanthoxylum bungeanum. Sci. World J. https://doi.org/10.1155/2014/181072 (2014).
Broekaert, W. F., Terras, F. R. G., Cammue, B. P. A. & Vanderleyden, J. An automatic quantitative assay for fungal development inhibition. FEMS Microbiol. Lett. 69, 55–60 (1990).
Koetsier, G. & Cantor, E. A sensible information to analyzing nucleic acid focus and purity with microvolume spectrophotometers. N. Engl. Biolabs 1, 1–8 (2019).
Livak, Ok. J. & Schmittgen, T. D. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two(-Delta Delta C(T)) methodology. Strategies 25, 402–408 (2001).
Archer, M. & Xu, J. Present practices for reference gene choice in RT-qPCR of Aspergillus: Outlook and suggestions for the long run. Genes (Basel) 12, 960 (2021).
Caceres, I. et al. Deciphering the anti-aflatoxinogenic properties of eugenol utilizing a large-scale q-PCR strategy. Toxins 8, 123 (2016).
Liu, X. et al. Impact of water exercise and temperature on the expansion of Aspergillus flavus, the expression of aflatoxin biosynthetic genes and aflatoxin manufacturing in shelled peanuts. Meals Management 82, 325–332 (2017).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ pre-processor. Bioinformatics 34, 884–890 (2018).
Kim, D., Langmead, B. & Salzberg, S. HISAT: A quick-spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).
Trapnell, C. et al. Transcript meeting and quantification by RNA-Seq reveals unannotated transcripts and isoform switching throughout cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
Anders, S. & Huber, W. Differential expression evaluation for sequence rely knowledge. Genome Biol. 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106 (2010).
Ruepp, A. et al. The FunCat, a useful annotation scheme for systematic classification of proteins from complete genomes. Nucleic Acids Res. 32, 5539–5545 (2004).
Priebe, S., Kreisel, C., Horn, F., Guthke, R. & Linde, J. FungiFun2: A complete on-line useful resource for systematic evaluation of gene lists from fungal species. Bioinformatics 31, 445–446 (2015).
Khaldi, N. et al. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 47, 736–741 (2010).
Georgianna, D. R. et al. Past aflatoxin: 4 distinct expression patterns and useful roles related to Aspergillus flavus secondary metabolism gene clusters. Mol. Plant Pathol. 11, 213–226 (2010).
Uka, V. et al. Chemical repertoire and biosynthetic equipment of the Aspergillus flavus secondary metabolome: A overview. Compr. Rev. Meals Sci. Meals Saf. 19, 2797–2842 (2020).
Zhao, X., Zhi, Q.-Q., Li, J.-Y., Keller, N. P. & He, Z.-M. The antioxidant gallic acid inhibits aflatoxin formation in Aspergillus flavus by modulating transcription components FarB and CreA. Toxins 10, 270. https://doi.org/10.3390/toxins10070270 (2018).
Seshime, Y. et al. Useful expression of the Aspergillus flavus PKS–NRPS hybrid CpaA concerned within the biosynthesis of cyclopiazonic acid. Bioorg. Med. Chem. Lett. 19, 3288–3292 (2009).
Greco, C., Pfannenstiel, T. B., Liu, C. J. & Keller, P. N. Depsipeptide aspergillicins revealed by chromatin reader protein deletion. ACS Chem. Biol. 14, 1121–1128 (2019).
Gilbert, Ok. M. et al. RNA sequencing of an nsdC mutant reveals international regulation of secondary metabolic gene clusters in Aspergillus flavus. Microbiol. Res. 182, 150–161 (2016).
Cary, J. W. et al. Transcriptome evaluation of Aspergillus flavus reveals veA-dependent regulation of secondary metabolite gene clusters, together with the novel aflavarin cluster. Eukaryot. Cell. 14, 983–997 (2015).
Han, X. et al. Useful evaluation of the nitrogen metabolite repression regulator gene nmrA in Aspergillus flavus. Entrance. Microbiol. 7, 1794. https://doi.org/10.3389/fmicb.2016.01794 (2016).
Wu, M. Y. et al. Systematic dissection of the evolutionarily conserved WetA developmental regulator throughout a genus of filamentous fungi. MBio 9, 4. https://doi.org/10.1128/mBio.01130-18 (2018).
Lee, M. Ok. et al. Unfavorable regulation and developmental competence in Aspergillus. Sci. Rep. 1, 28874. https://doi.org/10.1038/srep28874 (2016).
Fountain, J. C. et al. Oxidative stress and carbon metabolism affect Aspergillus flavus transcriptome composition and secondary metabolite manufacturing. Sci. Rep. 6, 38747. https://doi.org/10.1038/srep38747 (2016).
Roze, L. V., Chanda, A., Wee, J., Awad, D. & Linz, J. E. Stress-related transcription issue AtfB integrates secondary metabolism with oxidative stress response in Aspergilli. J. Biol. Chem. 286, 35137–35148 (2011).
Hong, S. Y., Roze, L. V., Wee, J. & Linz, J. E. Proof {that a} transcription issue regulatory community coordinates oxidative stress response and secondary metabolism in Aspergilli. MicrobiologyOpen 2, 144–160 (2013).
Wang, P. et al. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus. Sci. Rep. 9, 10499. https://doi.org/10.1038/s41598-019-47003-z (2019).
Caceres, I. et al. Piperine inhibits aflatoxin B1 manufacturing in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genet. Biol. 107, 77–85 (2017).
Affeldt, Ok. J., Carrig, J., Amare, M. & Keller, N. P. International survey of canonical Aspergillus flavus G protein-coupled receptors. MBio 14, e01501–e01514. https://doi.org/10.1128/mBio.01501-14 (2014).
Tsitsigiannis, D. I. & Keller, N. P. Oxylipins act as determinants of pure product biosynthesis and seed colonization in Aspergillus nidulans. Mol. Microbiol. 59, 882–892 (2006).
Sokół-Łętowska, A. et al. Composition and antioxidant exercise of crimson fruit liqueurs. Meals Chem. 157, 533–539 (2014).
Panche, A., Diwan, A. & Chandra, S. Flavonoids: An outline. J. Nutr. Sci. 5, 47. https://doi.org/10.1017/jns.2016.41 (2016).
Li, X. M., Li, Z. Y., Wang, Y. D., Wang, J. Q. & Yang, P. L. Quercetin inhibits the proliferation and aflatoxins biosynthesis of Aspergillus flavus. Toxins 11, 154. https://doi.org/10.3390/toxins11030154 (2019).
Li, T. et al. Antifungal exercise of important oil from Zanthoxylum armatum DC. on Aspergillus flavus and aflatoxins in saved platycladi semen. Entrance. Microbiol. 12, 633714. https://doi.org/10.3389/fmicb.2021.633714 (2021).
Worth, M. S. et al. The aflatoxin pathway regulator AflR induces gene transcription inside and out of doors of the aflatoxin biosynthetic cluster. FEMS Microbiol. Lett. 255, 275–279 (2006).
Burdock, G. A. & Flamm, W. G. Security evaluation of the mycotoxin cyclopiazonic acid. Int. J. Toxicol. 19, 195–218 (2000).
Lin, J., Zhao, X., Zhi, Q., Zhao, M. & He, Z. Transcriptomic profiling of Aspergillus flavus in response to 5-azacytidine. Fungal Genet. Biol. 56, 78–86 (2013).
Yang, M. et al. Transcriptomic insights into benzenamine results on the event, aflatoxin biosynthesis, and virulence of Aspergillus flavus. Toxins 11, 70. https://doi.org/10.3390/toxins11020070 (2019).
Lv, C. et al. Massive-scale comparative evaluation of eugenol-induced/repressed genes expression in Aspergillus flavus utilizing RNA-seq. Entrance. Microbiol. 9, 1116. https://doi.org/10.3389/fmicb.2018.01116 (2018).
Solar, Q., Shang, B., Wang, L., Lu, Z. & Liu, Y. Cinnamaldehyde inhibits fungal development and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl. Microbiol. Biotechnol. 100, 1355–1364 (2015).