Guowei, Q. et al. Soil heavy metallic air pollution and meals security in China: Results, sources and eradicating know-how. Chemosphere 267, 129205 (2021).
Nahar, Okay. et al. Polyamine and nitric oxide crosstalk: Antagonistic results on cadmium toxicity in mung bean vegetation via upregulating the metallic detoxing, antioxidant protection and methylglyoxal detoxing methods. Ecotoxicol. Environ. Saf. 126, 245–255 (2016).
Zou, J. et al. Transcriptional, physiological and cytological evaluation validated the roles of some key genes linked Cd stress in Salix matsudana Koidz. Environ. Exp. Bot. 134, 116–129 (2017).
Shi, X., Solar, H., Chen, Y., Pan, H. & Wang, S. Transcriptome sequencing and expression evaluation of cadmium (Cd) transport and detoxing associated genes in Cd-accumulating Salix integra. Entrance. Plant Sci. 7, 1577 (2017).
Meeûs, C. D., Eduljee, G. H. & Hutton, M. Evaluation and administration of dangers arising from publicity to cadmium in fertilisers: I. Sci. Whole Environ. 291, 167–187 (2002).
Jia, L. et al. Hormesis results induced by cadmium on progress and photosynthetic efficiency in a hyperaccumulator, Lonicera japonica Thunb. J. Plant Progress Regul. 34, 13–21 (2015).
Hasanuzzaman, M. et al. Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: An intrinsic research on antioxidant protection and glyoxalase methods. Entrance. Plant Sci. 8, 115 (2017).
Küpper, H., Parameswaran, A., Leitenmaier, B., TrtÃlek, M. & Å etlÃk, I. Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress within the hyperaccumulator Thlaspi caerulescens. New Phytol. 175, 655–674 (2007).
Lomaglio, T. et al. Impact of short-term cadmium stress on Populus nigra L. indifferent leaves. J. Plant Physiol. 182, 40–48 (2015).
Gupta, N., Ram, H. & Kumar, B. Mechanism of Zinc absorption in vegetation: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol. 15, 89–109 (2016).
Anwar, S. et al. Chelators induced uptake of cadmium and modulation of water relation, antioxidants, and photosynthetic traits of maize. Environ. Sci. Pollut. Res. 26, 17577–17590 (2019).
Jan, S. et al. Interactive impact of 24-epibrassinolide and silicon alleviates cadmium stress by way of the modulation of antioxidant protection and glyoxalase methods and macronutrient content material in Pisum sativum L. seedlings. BMC Plant Biol. 18, 146 (2018).
DalCorso, G., Farinati, S., Maistri, S. & Furini, A. How vegetation deal with cadmium: Staking all on metabolism and gene expression. J. Integr. Plant Biol. 50, 1268–1280 (2008).
Zhong, M. et al. The phosphoproteomic response of rice seedlings to cadmium stress. Int. J. Mol. Sci. 18, 2055 (2017).
Lin, Y. F. & Aarts, M. The molecular mechanism of zinc and cadmium stress response in vegetation. Cell. Mol. Life Sci. 69, 3187–3206 (2012).
Lou, L. et al. Sulfur protects pakchoi (Brassica chinensis L.) seedlings in opposition to cadmium stress by regulating ascorbate-glutathione metabolism. Int. J. Mol. Sci. 18, 1628 (2017).
Heyno, E., Klose, C. & Krieger-Liszkay, A. Origin of cadmium-induced reactive oxygen species manufacturing: Mitochondrial electron switch versus plasma membrane NADPH oxidase. New Phytol. 179, 687–699 (2008).
Shahid, M. et al. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical modifications in vegetation. Rev. Environ. Contam. Toxicol. 232, 1–44 (2014).
Guo, Q. et al. Antioxidative methods, metallic ion homeostasis and cadmium distribution in Iris lactea uncovered to cadmium stress. Ecotoxicol. Environ. Saf. 139, 50–55 (2017).
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Traits Plant Sci. 7, 405–410 (2002).
Liu, Y. et al. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere 69, 99–107 (2007).
Lobby, C. H. & Noctor, G. Ascorbate and glutathione: The guts of the redox hub. Plant Physiol. 155, 2–18 (2011).
Ding, S. et al. Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in Populus × canescens. Tree Physiol. 37, 1697–1712 (2017).
Bashri, G. & Prasad, S. M. Exogenous IAA differentially impacts progress, oxidative stress and antioxidants system in Cd pressured Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle. Ecotoxicol. Environ. Saf. 132, 329–338 (2016).
Harada, E., Yamaguchi, Y., Koizumi, N. & Hiroshi, S. Cadmium stress induces manufacturing of thiol compounds and transcripts for enzymes concerned in sulfur assimilation pathways in Arabidopsis. J. Plant Physiol. 159, 445–448 (2002).
Silvia, Okay. et al. Manufacturing of phytochelatins and glutathione by marine phytoplankton in response to metallic stress. J. Phycol. 42, 975–989 (2006).
Seth, C. S. et al. Phytoextraction of poisonous metals: A central function for glutathione. Plant Cell Environ. 35, 334–346 (2012).
Siddique, A., Kandpal, G. & Kumar, P. Proline accumulation and its defensive function beneath numerous stress situation in vegetation: An outline. J Pure Appl Microbiol. 12, 1655–1659 (2018).
MarÃa, E. A., Arnould, S. & László, S. Proline metabolism as regulatory hub. Traits Plant Sci. 27, 39–55 (2022).
Giberti, S., Funck, D. & Forlani, G. Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: Stimulation or inhibition by chloride ions and suggestions regulation by proline depend upon whether or not NADPH or NADH acts as co-substrate. New Phytol. 202, 911–919 (2014).
Kavi Kishor, P. B. & Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a extra crucial situation?. Plant, Cell Environ. 37, 300–311 (2014).
Sharmila, P., Kumari, P. Okay., Singh, Okay., Prasad, N. V. S. R. Okay. & Pardha-Saradhi, P. Cadmium toxicity-induced proline accumulation is coupled to iron depletion. Protoplasma 254, 763–770 (2017).
Nickelson, J. B., Holzmueller, E. J., Groninger, J. W. & Lesmeister, D. B. Earlier land use and invasive species impacts on long-term afforestation success. Forests 6, 3123–3135 (2015).
Wang, H. H., Koralewski, T. E., McGrew, E. Okay., Grant, W. E. & Byram, T. D. Species distribution mannequin for administration of an invasive vine in forestlands of japanese Texas. Forests 6, 4374–4390 (2015).
Yan, Okay., Wu, C., Zhang, L. & Chen, X. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica thumb.) beneath salt stress. Entrance. Plant Sci. 6, 227 (2015).
Liu, Z., He, X. & Chen, W. Results of cadmium hyperaccumulation on the concentrations of 4 hint parts in Lonicera japonica Thunb. Ecotoxicology 20, 698–705 (2011).
Atabayeva, S. D. et al. Response of vegetation to cadmium stress. Int. J. Biol. Chem. 13, 109–117 (2020).
Sobkowiak, R. & Deckert, J. Cadmium-induced modifications in progress and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol. Biochem. 41, 767–772 (2003).
Daud, M. Okay. et al. In vitro cadmium-induced alterations in progress and oxidative metabolism of upland cotton (Gossypium Hirsutum L.). Sci. World J. 2014, 1–10 (2014).
Rizwan, M. et al. Cadmium minimization in wheat: A crucial assessment. Ecotoxicol. Environ. Saf. 130, 43–53 (2016).
Zhang, X., Li, Okay. W., Chen, Okay. J., Liang, J. & Cui, L. J. Results of cadmium stress on seedlings progress and lively elements in Salvia miltiorrhiza. Plant Sci. J. 31, 583–589 (2013).
Romero-Puertas, M. C. et al. Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant Cell Environ. 27, 1122–1134 (2004).
Srivastava, R. Okay., Pandey, P., Rajpoot, R., Rani, A. & Dubey, R. S. Cadmium and lead interactive results on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251, 1047–1065 (2014).
Opdenakker, Okay., Remans, T., Keunen, E., Vangronsveld, J. & Cuypers, A. Publicity of Arabidopsis thaliana to Cd or Cu extra results in oxidative stress mediated alterations in MAPKinase transcript ranges. Environ. Exp. Bot. 83, 56–61 (2012).
Iqbal, N. et al. Sulfur within the alleviation of cadmium-induced oxidative stress in vegetation. Environ Adapt. Stress Toler. Vegetation Period Clim. Chang. 20, 429–446 (2012).
Wu, Z. et al. Antioxidant enzyme methods and the ascorbate-glutathione cycle as contributing elements to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) beneath reasonable cadmium stress. Chemosphere 138, 526–536 (2015).
Singh, S., Singh, A., Srivastava, P. Okay. & Prasad, S. M. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à -vis ascorbate-glutathione cycle. J. Photochem. Photobiol. B Biol. 178, 76–84 (2018).
Sahoo, S., Awasthi, J. P., Sunkar, R. & Panda, S. Okay. Figuring out glutathione ranges in vegetation. Strategies Mol. Biol. 1631, 273–277 (2017).
Li, X. et al. Glycolate oxidase-dependent H2O2 manufacturing regulates IAA biosynthesis in rice. BMC Plant Biol. 21, 326 (2021).
Akinyemi, A. J., Faboya, O. L., Olayide, I., Faboya, O. A. & Ijabadeniyi, T. Impact of cadmium stress on non-enzymatic antioxidant and nitric oxide ranges in two styles of maize (Zea mays). Bull. Environ. Contam. Toxicol. 98, 845–849 (2017).
Solar, J. et al. Contribution of cell partitions, nonprotein thiols, and natural acids to cadmium resistance in two cabbage varieties. Arch. Environ. Contam. Toxicol. 64, 243–252 (2013).
Jia, H. et al. Exogenous phosphorus remedy facilitates chelation-mediated cadmium detoxing in perennial ryegrass (Lolium perenne L.). J Hazar Mater. 389, 121849 (2020).
Liu, C. P., Shen, Z. G. & Li, X. D. Accumulation and detoxing of cadmium in Brassica pekinensis and B. chinensis. Biol. Plant. 51, 116–120 (2007).
Ben Rejeb, Okay., Abdelly, C. & Savouré, A. How reactive oxygen species and proline face stress collectively. Plant Physiol. Biochem. 80, 278–284 (2014).
Szabados, L. & Savouré, A. Proline: A multifunctional amino acid. Traits Plant Sci. 15, 89–97 (2010).
Yilmaz, D. D. & Parlak, Okay. U. Adjustments in proline accumulation and antioxidative enzyme actions in Groenlandia densa beneath cadmium stress. Ecol. Indic. 11, 417–423 (2011).
Paola, I. & Gianfranco, S. Enzymatic and non-enzymatic molecules with antioxidant operate. Antioxidants 10, 579 (2021).
Qamer, Z., Chaudhary, M. T., Du, X., Hinze, L. & Azhar, M. T. Evaluation of oxidative stress and antioxidative protection mechanisms in Gossypium hirsutum L. in response to excessive abiotic circumstances. J. Cotton Res. 4, 9 (2021).
Hojati, M. et al. Cadmium and copper induced modifications in progress, oxidative metabolism and terpenoids of Tanacetum parthenium. Environ. Sci. Pollut. Res. 24, 1–12 (2017).
Natarajan, S. Okay. et al. Proline dehydrogenase is important for proline safety in opposition to hydrogen peroxide-induced cell demise. Free Radic. Biol. Med. 53, 1181–1191 (2012).
Arnon, D. I. Copper enzymes in remoted chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).
Yang, H., Wu, F. & Cheng, J. Lowered chilling harm in cucumber by nitric oxide and the antioxidant response. Meals Chem. 127, 1237–1242 (2011).
Patterson, B. D., MacRae, E. A. & Ferguson, I. B. Estimation of hydrogen peroxide in plant extracts utilizing titanium (IV). Anal. Biochem. 139, 487–492 (1984).
Nakano, Y. & Asada, Okay. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts. Plant Cell Physiol. 22, 867–880 (1981).
Duarte, B., Caetano, M., Almeida, P. R., Vale, C. & Caçador, I. Accumulation and organic biking of heavy metallic in 4 salt marsh species, from Tagus estuary (Portugal). Environ. Pollut. 158, 1661–1668 (2010).
Yu, C. W., Murphy, T. M. & Lin, C. H. Hydrogen peroxide-induced chilling tolerance in mung beans mediated via ABA-independent glutathione accumulation. Funct. Plant Biol. 30, 955–963 (2003).
Sharma, S. S. et al. Cadmium toxicity to barley (Hordeum vulgare) as affected by various Fe dietary standing. Plant Sci. 166, 1287–1295 (2004).
Bates, L. S., Waldren, R. P. & Teare, I. D. Speedy willpower of free proline for water-stress research. Plant Soil. 39, 205–207 (1973).
R Growth Core Group, R. R: A Language and Surroundings for Statistical Computing. Vienna, Austria, ISBN 3900051070 (2015).