European Fee. Report from the fee to the European Parliament and the council on the implementation of the measures in regards to the apiculture sector of Regulation (EU) No 1308/2013 of the European Parliament and of the Council establishing a standard organisation of the markets in agricultural merchandise. p. 1–16. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:52016DC0776 (2016).
Motta, E. V. S. & Moran, N. A. Impression of glyphosate on the honey bee intestine microbiota: Results of depth, length, and timing of publicity. msystems 5, e00268-e1220. https://doi.org/10.1128/mSystems.00268-20 (2020).
Klein, A. M. et al. Significance of pollinators in altering landscapes for world crops. Proc. R. Soc. B-Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
Ollerton, J. Pollinator variety: Distribution, ecological operate, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919 (2017).
Greenleaf, S. S. & Kremen, C. Wild bees improve honey bees’ pollination of hybrid sunflower. PNAS 103, 13890–13895. https://doi.org/10.1073/pnas.0600929103 (2006).
Williams, I. H. The dependence of crop manufacturing throughout the European Union on pollination by honey bees. Agric. Zool. Rev. 20, 20 (1994).
Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22. https://doi.org/10.3896/ibra.1.49.1.02 (2010).
Vanengelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses within the US, fall 2007 to spring 2008. PLoS One 3, 6. https://doi.org/10.1371/journal.pone.0004071 (2008).
Chagnon, M. Fédération Canadienne de la Faune (Bureau régional du Québec, 2008).
Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in excessive, center and low revenue nations. Meals Coverage 37, 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003 (2012).
Haber, A. I., Steinhauer, N. A. & vanEngelsdorp, D. Use of chemical and nonchemical strategies for the management of Varroa destructor (Acari: Varroidae) and related winter colony losses in US beekeeping operations. J. Econ. Entomol. https://doi.org/10.1093/jee/toz088 (2019).
Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee well being: Can Varroa clarify a part of the colony losses?. Apidologie 41, 353–363. https://doi.org/10.1051/apido/2010017 (2010).
Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony inhabitants decline, and colony collapse dysfunction in america. J. Apic. Res. 49, 134–136. https://doi.org/10.3896/IBRA.1.49.1.30 (2010).
Chauzat, M. P. et al. Affect of pesticide residues on honey bee (Hymenoptera: Apidae) colony well being in France. Environ. Entomol 38, 514–523. https://doi.org/10.1603/022.038.0302 (2009).
Juan-Borras, M., Domenech, E. & Escriche, I. Combination-risk-assessment of pesticide residues in retail polyfloral honey. Meals Management 67, 127–134. https://doi.org/10.1016/j.foodcont.2016.02.051 (2016).
Kasiotis, Okay. M., Anagnostopoulos, C., Anastasiadou, P. & Machera, Okay. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: Reported loss of life incidents in honeybees. Sci. Whole. Environ 485–486, 633–642. https://doi.org/10.1016/j.scitotenv.2014.03.042 (2014).
Mullin, C. A. et al. Excessive ranges of miticides and agrochemicals in north american apiaries: Implications for honey bee well being. PLoS One 5, 19. https://doi.org/10.1371/journal.pone.0009754 (2010).
Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Buchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin have an effect on the immunocompetence of honey bees (Apis mellifera L.). J. Insect. Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).
Alptekin, S. et al. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is related to up-regulation of detoxing genes. Insect Mol. Biol. 25, 171–180. https://doi.org/10.1111/imb.12211 (2016).
Tesovnik, T. et al. Publicity of honey bee larvae to thiamethoxam and its interplay with Nosema ceranae an infection in grownup honey bees. Environ. Pollut. 256, 113443. https://doi.org/10.1016/j.envpol.2019.113443 (2020).
Gregore, A. et al. Results of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene laws in laboratory experiments. Sci. Rep. https://doi.org/10.1038/s41598-018-33348-4 (2018).
Schneider, C. W., Tautz, J., Grunewald, B. & Fuchs, S. RFID monitoring of sublethal results of two neonicotinoid pesticides on the foraging conduct of Apis mellifera. PLoS One 7, 9. https://doi.org/10.1371/journal.pone.0030023 (2012).
Vazquez, D. E., Ilina, N., Pagano, E. A., Zavala, J. A. & Farina, W. M. Glyphosate impacts the larval improvement of honey bees relying on the susceptibility of colonies. PLoS One https://doi.org/10.1371/journal.pone.0205074 (2018).
Vázquez, D. E., Latorre-Estivalis, J. M., Ons, S. & Farina, W. M. Continual publicity to glyphosate induces transcriptional adjustments in honey bee larva: A toxicogenomic examine. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.114148 (2020).
Farina, W. M., Balbuena, M., Herbert, L. T., Mengoni Goñalons, C. & Vázquez, D. E. Results of the herbicide glyphosate on honey bee sensory and cognitive talents: Particular person impairments with implications for the hive. Bugs 10, 354. https://doi.org/10.3390/insects10100354 (2019).
Wang, Y. H., Zhu, Y. C. & Li, W. H. Interplay patterns and mixed poisonous results of acetamiprid together with seven pesticides on honey bee (Apis mellifera L.). Ecotox. Environ. Protected 190, 10. https://doi.org/10.1016/j.ecoenv.2019.110100 (2020).
Kretschmann, A., Gottardi, M., Dalhoff, Okay. & Cedergreen, N. The synergistic potential of the azole fungicides prochloraz and propiconazole towards a brief α-cypermethrin pulse will increase over time in Daphnia magna. Aquat. Toxicol. 162, 94–101. https://doi.org/10.1016/j.aquatox.2015.02.011 (2015).
Yuan, X. et al. Intestine microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere https://doi.org/10.1016/j.chemosphere.2019.04.088 (2019).
Yang, Y. et al. Results of three widespread pesticides on survival, meals consumption and midgut bacterial communities of grownup employees Apis cerana and Apis mellifera. Environ. Pollut. 249, 860–867. https://doi.org/10.1016/j.envpol.2019.03.077 (2019).
Martinson, V. G. et al. A easy and distinctive microbiota related to honey bees and bumble bees. Mol. Ecol. 20, 619–628. https://doi.org/10.1111/j.1365-294X.2010.04959.x (2011).
Corby-Harris, V., Maes, P. & Anderson, Okay. E. The bacterial communities related to honey bee (Apis mellifera) foragers. PLoS One 9, 13. https://doi.org/10.1371/journal.pone.0095056 (2014).
Moran, N. A., Hansen, A. Okay., Powell, J. E. & Sabree, Z. L. Distinctive intestine microbiota of honey bees assessed utilizing deep sampling from particular person employee bees. PLoS One https://doi.org/10.1371/journal.pone.0036393 (2012).
Bonilla-Rosso, G. & Engel, P. Useful roles and metabolic niches within the honey bee intestine microbiota. Curr. Opin. Microbiol. 43, 69–76. https://doi.org/10.1016/j.mib.2017.12.009 (2018).
Kwong, W. Okay. & Moran, N. A. Intestine microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384. https://doi.org/10.1038/nrmicro.2016.43 (2016).
Kešnerová, L. et al. Intestine microbiota construction differs between honeybees in winter and summer season. ISME J. 14, 801–814. https://doi.org/10.1038/s41396-019-0568-8 (2020).
Killer, J., Dubná, S., Sedláček, I. & Švec, P. Lactobacillus apis sp. Nov., from the abdomen of honeybees (Apis mellifera), having an in vitro inhibitory impact on the causative brokers of American and European foulbrood. Int. J. Syst. Evol. Microbiol. 64, 152–157. https://doi.org/10.1099/ijs.0.053033-0 (2014).
Forsgren, E., Olofsson, T. C., Váasquez, A. & Fries, I. Novel lactic acid micro organism inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108. https://doi.org/10.1051/apido/2009065 (2010).
Schwarz, R. S., Huang, Q. & Evans, J. D. Hologenome concept and the honey bee pathosphere. Curr. Opin. Insect Sci. 10, 1–7. https://doi.org/10.1016/j.cois.2015.04.006 (2015).
Engel, P., Martinson, V. G. & Moran, N. A. Useful variety throughout the easy intestine microbiota of the honey bee. PNAS 109, 11002–11007. https://doi.org/10.1073/pnas.1202970109 (2012).
Kešnerová, L. et al. Disentangling metabolic features of micro organism within the honey bee intestine. PLoS Biol. 15, 28. https://doi.org/10.1371/journal.pbio.2003467 (2017).
Kwong, W. Okay., Engel, P., Koch, H. & Moran, N. A. Genomics and host specialization of honey bee and bumble bee intestine symbionts. PNAS 111, 11509–11514. https://doi.org/10.1073/pnas.1405838111 (2014).
Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee intestine microbiome. Environ. Microbiol. 17, 796–815. https://doi.org/10.1111/1462-2920.12526 (2015).
Motta, E. V. S., Raymann, Okay. & Moran, N. A. Glyphosate perturbs the intestine microbiota of honey bees. PNAS 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115 (2018).
Blot, N., Veillat, L., Rouze, R. & Delatte, H. Glyphosate, however not its metabolite AMPA, alters the honeybee intestine microbiota. PLoS One 14, 16. https://doi.org/10.1371/journal.pone.0215466 (2019).
Raymann, Okay. et al. Imidacloprid decreases honey bee survival charges however doesn’t have an effect on the intestine microbiome. Appl. Environ. Microbiol. 84, 13. https://doi.org/10.1128/aem.00545-18 (2018).
Rouze, R., Mone, A., Delbac, F., Belzunces, L. & Blot, N. The honeybee intestine microbiota is altered after power publicity to completely different households of pesticides and an infection by Nosema ceranae. Microbes Environ. 34, 226–233. https://doi.org/10.1264/jsme2.ME18169 (2019).
DeGrandi-Hoffman, G., Corby-Harris, V., DeJong, E. W., Chambers, M. & Hidalgo, G. Honey bee intestine microbial communities are strong to the fungicide PristineA (R) consumed in pollen. Apidologie 48, 340–352. https://doi.org/10.1007/s13592-016-0478-y (2017).
Liu, Y. J. et al. Thiacloprid publicity perturbs the intestine microbiota and reduces the survival standing in honeybees. J. Hazard. Mater. 389, 11. https://doi.org/10.1016/j.jhazmat.2019.121818 (2020).
Syromyatnikov, M. Y., Isuwa, M. M., Savinkova, O. V., Derevshchikova, M. I. & Popov, V. N. The impact of pesticides on the microbiome of animals. Agriculture 10, 79. https://doi.org/10.3390/agriculture10030079 (2020).
Thompson, H. M. et al. Evaluating publicity and potential results on honeybee brood (Apis mellifera) improvement utilizing glyphosate for example. Integr. Environ. Assess. Manag. 10, 463–470. https://doi.org/10.1002/ieam.1529 (2014).
Motta, E. V. S. et al. Oral and topical publicity to glyphosate in herbicide formulation impression the intestine microbiota and survival charges of honey bees. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01150-20 (2020).
Berg, C. J. et al. Glyphosate residue concentrations in honey attributed via geospatial evaluation to proximity of large-scale agriculture and switch off-site by bees. PLoS ONE 13, e0198876. https://doi.org/10.1371/journal.pone.0198876 (2018).
Rubio, F., Guo, E. & Kamp, L. Survey of glyphosate residues in honey, corn, and soy merchandise. Abstr. Pap. Am. Chem. Soc. https://doi.org/10.4172/2161-0525.1000249 (2015).
El Agrebi, N. et al. Honeybee and client’s publicity and threat characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Sci. Whole. Environ. 704, 135312. https://doi.org/10.1016/j.scitotenv.2019.135312 (2020).
Kubik, M. et al. Residues of captan (contact) and difenoconazole (systemic) fungicides in bee merchandise from an apple orchard. Apidologie 31, 531–541 (2000).
Lopez, S. H., Lozano, A., Sosa, A., Hernando, M. D. & Fernandez-Alba, A. R. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot examine. Chemosphere 163, 44–53. https://doi.org/10.1016/j.chemosphere.2016.07.008 (2016).
Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the intestine pathogen Nosema ceranae. PLoS One 8, 9. https://doi.org/10.1371/journal.pone.0070182 (2013).
Abdallah, O. I., Hanafi, A., Ghani, S. B. A., Ghisoni, S. & Lucini, L. Pesticides contamination in Egyptian honey samples. J. Consum. Prot. Meals Sci. 12, 317–327. https://doi.org/10.1007/s00003-017-1133-x (2017).
Blaga, G. V. et al. Antifungal residues evaluation in numerous Romanian honey samples evaluation by excessive decision mass spectrometry. J. Environ. Sci. Well being Half B-Pestic. Contam. Agric. Wastes https://doi.org/10.1080/03601234.2020.1724016 (2020).
Piechowicz, B., Wos, I., Podbielska, M. & Grodzicki, P. The switch of lively substances of pesticides and fungicides from an orchard to beehives. J. Environ. Sci. Well being Half B-Pestic. Contam. Agric. Wastes 53, 18–24. https://doi.org/10.1080/03601234.2017.1369320 (2018).
Almasri, H. et al. Mixtures of an insecticide, a fungicide and a herbicide induce excessive toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicol. Environ. Saf. 203, 111013. https://doi.org/10.1016/j.ecoenv.2020.111013 (2020).
Babendreier, D., Joller, D., Romeis, J., Bigler, F. & Widmer, F. Bacterial neighborhood buildings in honeybee intestines and their response to 2 insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610. https://doi.org/10.1111/j.1574-6941.2006.00249.x (2007).
Emery, O., Schmidt, Okay. & Engel, P. Immune system stimulation by the intestine symbiont Frischella perrara within the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590. https://doi.org/10.1111/mec.14058 (2017).
Yanez, O., Gauthier, L., Chantawannakul, P. & Neumann, P. Endosymbiotic micro organism in honey bees: Arsenophonus spp. will not be transmitted transovarially. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw147 (2016).
Tornisielo, V. L., Botelho, R. G., Alves, P. A. T., Bonfleur, E. J. & Monteiro, S. H. Pesticide tank mixes: an environmental viewpoint. in Herbicides-Present Analysis and Case Research in Use. 473–487 (InTech, 2013).
Kanga, L. H., Siebert, S. C., Sheikh, M. & Legaspi, J. C. Pesticide residues in conventionally and organically managed Apiaries in South and North Florida. Curre. Investig. Agric. Curr. Res. https://doi.org/10.32474/CIACR.2019.07.000262 (2019).
Lambert, O. et al. Widespread prevalence of chemical residues in beehive matrices from apiaries situated in numerous landscapes of western France. PLoS One 8, 12. https://doi.org/10.1371/journal.pone.0067007 (2013).
Mullins, J. W. Pest Management with Enhanced Environmental Security, Vol 524 ACS Symposium Collection, Vol. 13 183–198 (American Chemical Society, 1993).
Nguyen, B. Okay. et al. Does imidacloprid seed-treated maize have an effect on honey bee mortality?. J. Econ. Entomol. 102, 616–623. https://doi.org/10.1603/029.102.0220 (2009).
Pollak, P. High quality chemical substances–the trade and the enterprise. Chem. Int. 29, 22. https://doi.org/10.1515/ci.2007.29.5.22b (2007).
Amrhein, N., Deus, B., Gehrke, P. & Steinrücken, H. C. The location of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant. Physiol. 66, 830–834. https://doi.org/10.1104/pp.66.5.830 (1980).
Cao, G. et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase exhibits excessive glyphosate tolerance in Escherichia coli and tobacco crops. PLoS One 7, e38718. https://doi.org/10.1371/journal.pone.0038718 (2012).
Hitchcock, C. A., Dickinson, Okay., Brown, S. B., Evans, E. G. V. & Adams, D. J. Interplay of azole antifungal antibiotics with cytochrome P-450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem. J. 266, 475–480. https://doi.org/10.1042/bj2660475 (1990).
Alberoni, D., Favaro, R., Baffoni, L., Angeli, S. & Di Gioia, D. Neonicotinoids within the agroecosystem: In-field long-term evaluation on honeybee colony energy and microbiome. Sci. Whole Environ. https://doi.org/10.1016/j.scitotenv.2020.144116 (2021).
Xu, C. et al. Modifications in intestine microbiota could also be early indicators of liver toxicity induced by epoxiconazole in rats. Chemotherapy 60, 135–142. https://doi.org/10.1159/000371837 (2014).
Yang, C., Hamel, C., Vujanovic, V. & Gan, Y. Fungicide: Modes of motion and attainable impression on nontarget microorganisms. ISRN Ecol. https://doi.org/10.5402/2011/130289 (2011).
Coupe, R. H., Kalkhoff, S. J., Capel, P. D. & Gregoire, C. Destiny and transport of glyphosate and aminomethylphosphonic acid in floor waters of agricultural basins. Pest Manag. Sci. 68, 16–30. https://doi.org/10.1002/ps.2212 (2012).
Howe, C. M. et al. Toxicity of glyphosate-based pesticides to 4 North American frog species. Environ. Toxicol. Chem. 23, 1928–1938. https://doi.org/10.1002/etc.2268 (2004).
Wagner, N., Reichenbecher, W., Teichmann, H., Tappeser, B. & Lötters, S. Questions in regards to the potential impression of glyphosate-based herbicides on amphibians. Environ. Toxicol. Chem. 32, 1688–1700. https://doi.org/10.1002/etc.2268 (2013).
Pareja, L. et al. Analysis of glyphosate and AMPA in honey by water extraction adopted by ion chromatography mass spectrometry. A pilot monitoring examine. Anal. Strategies 11, 2123–2128. https://doi.org/10.1039/c9ay00543a (2019).
Thompson, T. S., van den Heever, J. P. & Limanowka, R. E. Willpower of glyphosate, AMPA, and glufosinate in honey by on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry.. Meals. Addit. Contam. Half A Chem. Anal. Management. Expo. Danger. Assess 36, 434–446. https://doi.org/10.1080/19440049.2019.1577993 (2019).
Dai, P. et al. The herbicide glyphosate negatively impacts midgut bacterial communities and survival of honey bee throughout larvae reared in vitro. J. Agric. Meals Chem. 66, 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212 (2018).
Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee intestine microbiota promotes host weight achieve through bacterial metabolism and hormonal signaling. PNAS 114, 4775–4780. https://doi.org/10.1073/pnas.1701819114 (2017).
du Rand, E. E. et al. Cleansing mechanisms of honey bees (Apis mellifera) leading to tolerance of dietary nicotine. Sci. Rep. https://doi.org/10.1038/srep11779 (2015).
Xiao, W. J. et al. Modulation of the pentose phosphate pathway alters section I metabolism of testosterone and dextromethorphan in HepG2 cells. Acta Pharmacol. Sin. 36, 259–267. https://doi.org/10.1038/aps.2014.137 (2015).
Renzi, M. T. et al. Continual toxicity and physiological adjustments induced within the honey bee by the publicity to fipronil and Bacillus thuringiensis spores alone or mixed. Ecotox. Environ. Protected. 127, 205–213. https://doi.org/10.1016/j.ecoenv.2016.01.028 (2016).
Singh, A., Gupta, V., Siddiqi, N., Tiwari, S. & Gopesh, A. Time course research on impression of low temperature publicity on the degrees of protein and enzymes in fifth instar larvae of Eri Silkworm, Philosamia ricini (Lepidoptera: satuniidae). Biochem. Anal. Biochem. 6, 6. https://doi.org/10.4172/2161-1009.1000321 (2017).
Vlahović, M., Lazarević, J., Perić-Mataruga, V., Ilijin, L. & Mrdaković, M. Plastic responses of larval mass and alkaline phosphatase to cadmium within the gypsy moth larvae. Ecotox. Environ. Protected 72, 1148–1155. https://doi.org/10.1016/j.ecoenv.2008.03.012 (2009).
Coleman, J. E. Construction and mechanism of alkaline-phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441–483. https://doi.org/10.1146/annurev.bb.21.060192.002301 (1992).
Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, Okay. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents irritation in zebrafish in response to the intestine microbiota. Cell Host Microbe 2, 371–382. https://doi.org/10.1016/j.chom.2007.10.010 (2007).
Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. Insect Immunol. 1, 69–96. https://doi.org/10.1016/B978-012373976-6.50006-9 (2008).
Collison, E., Hird, H., Cresswell, J. & Tyler, C. Interactive results of pesticide publicity and pathogen an infection on bee well being—a vital evaluation. Biol. Rev. 91, 1006–1019. https://doi.org/10.1111/brv.12206 (2016).
Helmer, S. H., Kerbaol, A., Aras, P., Jumarie, C. & Boily, M. Results of reasonable doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environ. Sci. Pollut. Res. 22, 8010–8021. https://doi.org/10.1007/s11356-014-2879-7 (2015).
Efferth, T., Schwarzl, S. M., Smith, J. & Osieka, R. Function of glucose-6-phosphate dehydrogenase for oxidative stress and apoptosis. Cell Loss of life Differ. 13, 527–528. https://doi.org/10.1038/sj.cdd.4401807 (2006).
Corona, M. & Robinson, G. E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 15, 687–701. https://doi.org/10.1111/j.1365-2583.2006.00695.x (2006).
Subject, L. M., Devonshire, A. L., Ffrench-Fixed, R. H. & Forde, B. G. Modifications in DNA methylation are related to lack of insecticide resistance within the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett. 243, 323–327. https://doi.org/10.1016/0014-5793(89)80154-1 (1989).
Ma, M. et al. Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its function in oxidative resistance throughout opposed environmental stress. Biochimie 144, 85–97. https://doi.org/10.1016/j.biochi.2017.10.022 (2018).
Zou, F., Guo, Q., Shen, B. & Zhu, C. A cluster of CYP6 gene household related to the main quantitative trait locus is chargeable for the pyrethroid resistance in Culex pipiens pallen. Insect Mol. Biol. 28, 528–536. https://doi.org/10.1111/imb.12571 (2019).
Lang, M. L., Braun, C. L., Kanost, M. R. & Gorman, M. J. Multicopper oxidase-1 is a ferroxidase important for iron homeostasis in Drosophila melanogaster. PNAS 109, 13337–13342. https://doi.org/10.1073/pnas.1208703109 (2012).
Habineza, P. et al. The selling impact of intestine microbiota on development and improvement of Purple Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its dietary metabolism. Entrance. Microbiol. https://doi.org/10.3389/fmicb.2019.01212 (2019).
Kwong, W. Okay., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native intestine microbiota of honey bees. R. Soc. Open Sci. 4, 170003. https://doi.org/10.1098/rsos.170003 (2017).
Paradis, D., Berail, G., Bonmatin, J. M. & Belzunces, L. P. Delicate analytical strategies for 22 related pesticides of three chemical households in honey by GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem 406, 621–633. https://doi.org/10.1007/s00216-013-7483-z (2014).
Wiest, L. et al. Multi-residue evaluation of 80 environmental contaminants in honeys, honeybees and pollens by one extraction process adopted by liquid and gasoline chromatography coupled with mass spectrometric detection. J. Chromatogr. A 1218, 5743–5756. https://doi.org/10.1016/j.chroma.2011.06.079 (2011).
Zufelato, M. S., Lourenco, A. P., Simoes, Z. L. P., Jorge, J. A. & Bitondi, M. M. G. Phenoloxidase exercise in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem. Mol. Biol. 34, 1257–1268. https://doi.org/10.1016/j.ibmb.2004.08.005 (2004).
Gallup, J. M. qPCR inhibition and amplification of inauspicious templates. in PCR troubleshooting and optimization: the important information. 23–65 (Horizon Scientific Press, 2011).
Caporaso, J. G. et al. International patterns of 16S rRNA variety at a depth of tens of millions of sequences per pattern. PNAS 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
Callahan, B. J. et al. DADA2: Excessive-resolution pattern inference from Illumina amplicon knowledge. Nat. Strategies 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).
McMurdie, P. J. & Holmes, S. phyloseq: An R bundle for reproducible interactive evaluation and graphics of microbiome census knowledge. PLoS One 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Easy statistical identification and removing of contaminant sequences in marker-gene and metagenomics knowledge. Microbiome 6, 226. https://doi.org/10.1186/s40168-018-0605-2 (2018).
Schliep, Okay. P. phangorn: Phylogenetic evaluation in R. Bioinformatics 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706 (2011).
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference normally parametric fashions. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).
Belzunces, L. P., Theveniau, M., Masson, P. & Bounias, M. Membrane acetylcholinesterase from Apis mellifera head solubilized by phosphatidylinositol-specific phospholipase-C interacts with an anti-CRD antibody. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 95, 609–612. https://doi.org/10.1016/0305-0491(90)90029-s (1990).
Bergmeyer, H. U. & Gawehn, Okay. Rules of Enzymatic Evaluation (Verlag Chemie, 1978).
Al-Lawati, H., Kamp, G. & Bienefeld, Okay. Traits of the spermathecal contents of young and old honeybee queens. J. Insect Physiol. 55, 117–122. https://doi.org/10.1016/j.jinsphys.2008.10.010 (2009).
Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione s-transferases—first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).
Bounias, M., Kruk, I., Nectoux, M. & Popeskovic, D. Toxicology of cupric salts on honeybees. V. Gluconate and sulfate motion on intestine alkaline and acid phosphatases. Ecotox. Envirom. Protected 35, 67–76. https://doi.org/10.1006/eesa.1996.0082 (1996).
Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010).
Therneau, T. “Survival”: A Bundle for Survival Evaluation in S. R bundle model 2.38. https://CRAN.R-project.org/package=survival. (2015).
Kassambara, A. & Kosinski, M. “Survminer”: Drawing Survival Curves utilizing “ggplot2”. R bundle model 0.4.2. https://CRAN.R-project.org/package=survminer. (2018).
de Mendiburu, F. Statistical Procedures for Agricultural Analysis. Bundle “Agricolae” Model 1.44. Complete R Archive Community. Institute for Statistics and Arithmetic, Vienna, Austria. http://cran.r-project.org/web/packages/agricolae/agricolae.pdf (2013).
Caraux, G. & Pinloche, S. PermutMatrix: A graphical atmosphere to rearrange gene expression profiles in optimum linear order. Bioinformatics 21, 1280–1281. https://doi.org/10.1093/bioinformatics/bti141 (2004).