Armstrong, Okay. O., Das, S. & Cresko, J. Vast bandgap semiconductor alternatives in energy electronics. In 2016 IEEE 4th Workshop on Vast Bandgap Energy Units and Purposes (WiPDA) 259–264 (IEEE, 2016). https://doi.org/10.1109/WiPDA.2016.7799949.
Baliga, B. J. Energy semiconductor gadget determine of benefit for high-frequency purposes. IEEE Electron Gadget Lett. 10, 455–457 (1989).
Dalla Vecchia, M., Ravyts, S., Van den Broeck, G. & Driesen, J. Gallium-nitride semiconductor know-how and its sensible design challenges in energy electronics purposes: An outline. Energies 12, 2663 (2019).
Kizilyalli, I. C., Edwards, A. P., Aktas, O., Prunty, T. & Bour, D. Vertical energy p-n diodes primarily based on bulk GaN. IEEE Trans. Electron Units 62, 414–422 (2015).
Kizilyalli, I. C., Bui-Quang, P., Disney, D., Bhatia, H. & Aktas, O. Reliability research of vertical GaN units primarily based on bulk GaN substrates. Microelectron. Reliab. 55, 1654–1661 (2015).
Tsao, J. Y. et al. Ultrawide-bandgap semiconductors: Analysis alternatives and challenges. Adv. Electron. Mater. 4, 1600501 (2018).
Mion, C., Muth, J. F., Preble, E. A. & Hanser, D. Correct dependence of gallium nitride thermal conductivity on dislocation density. Appl. Phys. Lett. 89, 092123 (2006).
Kucharski, R., Sochacki, T., Lucznik, B. & Bockowski, M. Development of bulk GaN crystals. J. Appl. Phys. 128, 050902 (2020).
Pearton, S. J., Hwang, Y.-S. & Ren, F. Radiation results in GaN-based excessive electron mobility transistors. J. Miner. Met. Mater. Soc. 67, 1601–1611 (2015).
Anderson, T. J. et al. Substrate-dependent results on the response of AlGaN/GaN HEMTs to 2-MeV proton irradiation. IEEE Electron Gadget Lett. 35, 826–828 (2014).
Pushpakaran, B. N., Subburaj, A. S. & Bayne, S. B. Business GaN-based energy digital techniques: A overview. J. Electron. Mater. 49, 6247–6262 (2020).
Gallagher, J. C. et al. Lengthy vary, non-destructive characterization of GaN substrates for energy units. J. Cryst. Development 506, 178–184 (2019).
Gallagher, J. C. et al. Impact of floor passivation and substrate on proton irradiated AlGaN/GaN HEMT transport properties. ECS J. Strong State Sci. Technol. 6, S3060–S3062 (2017).
Koehler, A. D. et al. Atomic layer epitaxy AlN for enhanced AlGaN/GaN HEMT passivation. IEEE Electron Gadget Lett. 34, 1115–1117 (2013).
Weaver, B. D. et al. Editors’ alternative—on the radiation tolerance of AlGaN/GaN HEMTs. ECS J. Strong State Sci. Technol. 5, Q208–Q212 (2016).
Liu, Y., Peng, H., Ailihumaer, T., Raghothamachar, B. & Dudley, M. X-ray topography characterization of GaN substrates used for energy digital units. J. Electron. Mater. 50, 2981–2989 (2021).
Gallagher, J. C. et al. Impact of GaN substrate properties on vertical GaN PiN diode electrical efficiency. J. Electron. Mater. 50, 3013–3021 (2021).
Schroder, D. Okay. Semiconductor Materials and Gadget Characterization (Wiley, New York). https://doi.org/10.1002/0471749095 (2005).
Götz, W., Johnson, N. M., Walker, J., Bour, D. P. & Road, R. A. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 68, 667–669 (1996).
Nakano, Y. & Jimbo, T. Electrical properties of acceptor ranges in Mg-Doped GaN. Phys. sTatus Solidi 438–442 (2003) https://doi.org/10.1002/pssc.200390082.
Ebrish, M. A. et al. A examine on the affect of mid-gap defects on vertical GaN diodes. IEEE Trans. Semicond. Manuf. https://doi.org/10.1109/TSM.2020.3019212 (2020).
Gallagher, J. C. et al. Predicting vertical GaN diode high quality utilizing lengthy vary optical exams on substrates. In 2020 Worldwide Convention on Compound Semiconductor Manufacturing Expertise 207–210 (2020).
Hite, J. Okay. et al. (Invited) GaN homoepitaxial development and substrate-dependent results for vertical energy units. ECS Trans. 98, 63–67 (2020).
Motoki, Okay. Growth of gallium nitride substrates. SEI Tech. Rev. 70, 28–35 (2010).
Kuball, M. Raman spectroscopy of GaN, AlGaN and AlN for course of and development monitoring/management. Surf. Interface Anal. 31, 987–999 (2001).
Narita, T. & Tokuda, Y. Deep Ranges in GaN. In Characterization of Defects and Deep Ranges for GaN Energy Units 1–36 (AIP Publishing, 2020). https://doi.org/10.1063/9780735422698_003.
Ji, D., Ercan, B. & Chowdhury, S. Experimental willpower of affect ionization coefficients of electrons and holes in gallium nitride utilizing homojunction buildings. Appl. Phys. Lett. 115, 073503 (2019).